Using First Principle, Find Derivative of log(Cos x).

Table of Contents
Using First Principle, Find Derivative of log(Cos x). The derivative of a function $f(x)$ by the first principle of derivatives is defined to be the following limit:

$f'(x)=\dfrac{d}{dx}(f(x))$ $=\lim\limits_{h \to 0} \dfrac{f(x+h)-f(x)}{h}$ $\quad \cdots (i)$

Here the symbol $’$ denotes the derivative of a function. Using this first principle, we will now find the derivative of $\log(\cos x)$.

Derivative of log(cos x) by First Principle

In the above rule (i) of the first principle of the derivative, we will take $f(x)=\log(\cos x)$. So the derivative of $\log(\cos x)$ by the first principle is

$\dfrac{d}{dx}(\log(\cos x)) = (\log \cos x)’$$=\lim\limits_{h \to 0} \dfrac{\log(\cos(x+h))-\log(\cos x)}{h}$

To find this limit, we will proceed as follows:

Step 1: At first, we will apply the formula of $\log a -\log b =\log (a/b)$. So the above limit is

$=\lim\limits_{h \to 0} \dfrac{\log(\dfrac{\cos(x+h)}{\cos x})}{h}$

Step 2: Next, using the trigonometric formula of $\cos(a+b)=\cos a \cos b-\sin a \sin b$, we get

$=\lim\limits_{h \to 0}$ $\dfrac{\log(\dfrac{\cos x \cos h -\sin x \sin h}{\cos x})}{h}$

$=\lim\limits_{h \to 0}$ $\dfrac{\log(\dfrac{\cos x \cos h}{\cos x} -\dfrac{\sin x \sin h}{\cos x})}{h}$

$=\lim\limits_{h \to 0}$ $\dfrac{\log(\cos h – \tan x \sin h)}{h} \quad$ as we know that $\dfrac{\sin x}{\cos x} =\tan x$.

Step 3: As $\cos h$ tends to $1$ when $h \to 0$, from the above step we obtain that the derivative of $\log \sin x$ is

$=\lim\limits_{h \to 0}$ $\dfrac{\log(1 – \tan x \sin h)}{h}$

$=\lim\limits_{h \to 0}$ $[\dfrac{\log(1 – \tan x \sin h)}{-\tan x \sin h}$ $\times \dfrac{-\tan x \sin h}{h}]$

Let $z=-\tan x \sin h$. Then $z \to 0$ when $h \to 0$.

$=\lim\limits_{z \to 0}$ $\dfrac{\log(1 + z)}{z}$ $\times \lim\limits_{h \to 0} \dfrac{-\tan x \sin h}{h}$

$=1 \times (-\tan x) \lim\limits_{h \to 0} \dfrac{\sin h}{h}$ as the limit of $\log(1+z)/z$ is one when z tends to zero.

$=-\tan x \times 1$ as $\lim\limits_{h \to 0} \dfrac{\sin h}{h} =1$

$=-\tan x$

Thus the derivative of log(cos x) is -tan x, and this is obtained by the first principle of derivatives.

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.

Frequently Asked Questions

What is Nepali Educate?

Nepali Educate is an online platform dedicated to providing educational resources, support, and information for students, parents, and educators in Nepal.

What services does Nepali Educate offer?

Nepali Educate offers a range of services, including educational articles, exam preparation resources, career guidance, and information about educational institutions in Nepal.

How can I access the resources on Nepali Educate?

All resources on Nepali Educate are accessible through the website. Simply visit the website and explore the various sections, including articles, exam tips, and career guidance.

Are the resources on Nepali Educate free?

Yes, the majority of the resources on Nepali Educate are available for free. However, there might be some premium or additional services that require a subscription or payment.

How can I contribute to Nepali Educate?

Nepali Educate welcomes contributions from educators, professionals, and students. If you have valuable insights, educational content, or resources to share, you can contact us through the website for contribution opportunities.

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.