Matrices and Determinants Exercise: 5.2 Class 11 Basic Mathematics Solution [NEB UPDATED]

Estimated read time: 13 min
XI Basic Mathematics Solution Exercise 5.2

Exercise 5.2

1. Evaluate the determinant of the following matrices.

a.(1234)

Solution:

Let A = (1234)

Or, |A|= |1234| = 1*4 – 2 * 3 = –2. 

b.(1111)

Solution:

Let A = (1111)

Or, |A|= |1111| = –1 + 1= 0. 

c.(123104123)

Solution:

Let A = (123104123), Then

|A|= |123104123|.

Or, |A| = 1|0423| – 2 |1413| + 3 |1012|

= 1(0 – 8) – 2(3 – 4) + 3(–2 – 0) = 0 

d.(103214231)

Solution:

Let A = (103214231), Then

Or, |A|= |103214231|.

Or, |A| = –1|1431| – 0 |2421| + 3 |2123|

= –1(–1 + 12) – 0 + 3(–6 + 2) = –23. 

e. (322410231)

Solution:

Let A = (322410231), Then

Or, |A|= |322410231|.

Or, |A| = 3|1031| – (–2)|4021| + 2 |4123|

= 3(1 – 0) + 2(4 – 0) + 2(12 – 2) = 31.

f.(220124456)

Solution:

Let A = (220124456), Then

Or, |A|= |220124456|.

Or, |A| = 2|2456| + 2|1446| + 0 |1245|

= 2(12 – 20) + 2(–6 + 16) + 0 = 4.

= 4.

 

2. Solve for x.

a.|x23101220|=0

Solution:

|x23101220|=0

Or, |x23101220|=0

Or, x |0120|2|1120|+3|1022| = 0

Or, x(0 + 2) – 2(0 – 2) + 3(2 – 0) = 0

Or, 2x + 4 + 6 = 0

Or, 2x + 10 = 0

Or, x = –5. 

b.|x3333x223|=0

Solution:

|x3333x223|=0

Or, |x3333x223|=0

Or, x |3x33|3|3x23|+3|3323| = 0

Or, x(9 – 3x) – 3(9 – 2x) + 3(9 – 6) = 0

Or, 9x – 3x2 – 27 + 6x + 9 = 0

Or, –3x2 + 15x – 18 = 0

Or, x2 – 5x + 6 = 0

Or, (x – 2)(x – 3) = 0

Either, x – 2 = 0.

So, x = 2

Or, x – 3 = 0

So, x = 3

So, x = 2 or 3.

 

3. Without expanding the determinants, show that the values of each of the following determinants is zero.

(i)|61924718327|

Solution:

Or, |61924718327|=|619247363139|=3|619247619| (taking 3 common from R3).

= 3.0 = 0   (So, R1 = R3). 

(ii)|1ab+c1bc+a1ca+b|

Soln:

Or, |1ab+c1bc+a1ca+b|=|1ab+c+a1bc+a+b1ca+b+c|(C3→ C2 + C3)

= (a + b + c) .|1a11b11c1|  (Taking a + b + c common from C3).

= (a + b + c). 0 = 0   (C1 = C3). 

(iii)|(ab)(bc)(ca)(bc)(ca)(ab)(ca)(ab)(bc)|

Solution:

Or, |(ab)(bc)(ca)(bc)(ca)(ab)(ca)(ab)(bc)|=|ab+bcbccabc+cacaabca+ababbc|(C1→ C1 + C2)

=|acbccabacaabcbabbc|= |cabccaabcaabbcabbc| (Taking –1 common from C1).

= 0 (C1 = C3). 

(iv)|1bca(b+c)1cab(c+a)1abc(a+b)|

Solution:

Or, |1bca(b+c)1cab(c+a)1abc(a+b)|=|1bcab+ac1cabc+ba1abca+cb|

= |1bcab+ac+bc1cabc+ab+ca1abac+bc+ab|(C1C1+C2)

 = (ab + bc + ca) |1bc11ca11ab1| (Taking ab + bc common from C3).

= (ab + bc + ca) . 0 = 0   (C1 = C3). 

(v)|1bcbc(b+c)1caca(c+a)1abab(a+b)|

Solution:

Or, |1bcbc(b+c)1caca(c+a)1abab(a+b)|=1abc|aabcabc(b+c)babcabc(c+a)cabcabc(a+b)|R1aR1R2bR2R3ac

= 1abc.abc.abc|a1b+cb1c+ac1a+b|   (taking abc common from C2 and C3).

 = abc |a1b+c+ab1c+a+bc1a+b+c| (C3→C3 + C1)

= abc(a + b + c) |a11b11c11|  (taking a + b + c common from C3).

= abc (a + b + c).0 = 0  (C2 = C3).

(vi)|1ww2ww21w21w|

Solution:

Or, |1ww2ww21w21w|=|1+w+w2ww2w+w2+1w21w2+1+w1w| (C1→ C1 + C2 + C3)

= |0ww20w2101w| = 0  (Each element of C1 = 0).

 

4) Evaluate:

(i)|516171567111|

Solution:

|516171567111|

Or, |516171567111|=|511611711567111| (R1→R1 – R3)

= |506070567111|

= 10 |567567111| (Taking 10 common from R1).

= 10 * 0 = 0.   (R1 = R2). 

(ii)|161923151822131720|

Solution:

|161923151822131720|

Or, |161923151822131720|=|161519182322151822131720| (R1→R1 – R3)

= |111151822131720|=|1111115181822181317172017|C1C1C2C3C3C2

= |01031844173|

= –1 |3443|

= –1(–9 + 16) = –7.

 

5) Without expanding the determinants, prove that

(i)|1784345102|= |8421457310| 

Solution:

Or, |1784345102|=|1457310842| (Rows and columns are interchanged).

= |1458427310| (Two adjacent rows are interchanged).

= |8421457310| (Two adjacent rows are interchanged).

(ii)|357921785|+|937258175|

Solution:

Or, |357921785| and Δ=|937258175| (Rows and columns are interchanged).

Or, Δ = |357921785| = |397528715| (Rows and columns are interchanged).

= |937258175| (Two adjacent columns are interchanged.)

= ΔSo, Δ+Δ = 0. 

(iii)|1xx21yy21zz2|=|1xyz1yzx1zxy|

Solution:

Or, |1xx21yy21zz2|=1xyz|xyzxx2xyzyy2xyzzz2|

= 1xyz.xyz|yz1xzx1yxy1z|  (x,y,z are taken common from R1,R2 and R3).

= |1yzx1zxy1xyz| (Two adjacent column are interchanged).

= |1xyz1yzx1zxy| (Two adjacent columns are interchanged). 

(iv)|1bcb+c1cac+a1aba+b|=|1aa21bb21cc2|

Solution:

L.H.S. =|1bcb+c1cac+a1aba+b|=|1bc(a+b+c)a1ca(b+c+a)b1ab(a+b+c)c|

= |1bca+b+c1cab+c+a1aba+b+c||1bca1cab1abc|

= (a + b + c)|1bc11ca11ab1|1abc|aabca2babcb2cabcc2|

= (a + b + c). 0 – 1abc.abc |a1a2b1b2c1c2| = |1aa21bb21cc2| = R.H.S. 

(v) |bcaa2cabb2abcc2|= |1a2a31b2b31c2c3|

Solution:

L.H.S. = |bcaa2cabb2abcc2|=1abc|abca2a3abcb2b3abcc2c3|

= 1abc.abc|1a2a31b2b31c2c3|

= |1a2a31b2b31c2c3|  = R.H.S.

 

6) Show that:

(i)|111abcbccaab|=(a – b)(c – a)(b – c) 
Solution:

L.H.S. = |111abcbccaab|

= |100abacabccabcabbc|(C2C2C1C3C3C1)

= |bacac(ab)b(ac)| 

= |(ab)(ca)c(ab)b(ca)|

= (a – b)(c – a) |11cb| = (a – b)(c – a)(b – c) 

= R.H.S. 

(ii)|abca2b2c2b+cc+aa+b|(C2C2C1C3C3C1)=(a – b)(b – c)(c – a)(a + b + c)

Solution:

L.H.S. = |abca2b2c2b+cc+aa+b|(C2C2C1C3C3C1)

= |a(ab)(ca)a2(ab)(a+b)(ca)(c+a)b+c(ab)(ca)|

= (a – b)(c – a) |a11a2(a+b)(c+a)b+c11|

= (a – b)(c – a) |a10a2(a+b)cbb+c10| (C­3àC3 + C2).

= –(a – b)(c – a)(c – b) |a1b+c1|

= (a – b)(b – c)(c – a)(a + b + c) = R.H.S. 

(iii)|111abca3b3c3|=(a – b)(b – c)(c – a)(a + b + c)

Solution:

L.H.S. = |111abca3b3c3|=|11111abbcba3b3b3c3b3|(C1C1C2C3C3C1)

= |010abbcba3b3b3c3b3|

= 1|abcba3b3c3b3|

= –(a – b)(c – b) |11a2+ab+b2c2+cb+b2|

= (a – b)(b – c)(c2 + cb + b2 – a2 – ab – b2)

= (a – b)(b – c){(c + a)(c – a) + b(c – a)}

= (a – b)(b – c)(c – a)(a + b + c) = R.H.S. 

(iv)|xyzx2y2z2yzzxxy|=(b-c)(c-a)(a-b)(a+b+c)

Solution:

L.H.S. = |xyzx2y2z2yzzxxy|=|xyyzyx2y2y2z2y2yzzxzxxyzx|(C1C1C2C3C3C2)

= (x – y)(z – y) |1y1x+yy2z+yzzxx|

= (x – y)(z – y)|0y1xzy2z+y1zxx| (C1àC1 – C3)

= (x – y)(z – y)(z – x) |0y11y2z+y1zxx|  (Taking x – z common from C1).

= (x – y)(z – y)(z – x) |0y10y2zxz+y1zxx+x|  (R2àR2 – R3)

= (x – y)(z – y)(z – x).1. |y1y2zxz+y+x|

= (x – y)(z – y)(z – x){yz + y2 + xy – y2 + zx}

= (x – y)(z – y)(z – x)(yz + zx + xy) = R.H.S. 

(v) |b+cabc+acaa+bbc|=(a + b + c)(a – c)2

Solution:

L.H.S. = |b+cabc+acaa+bbc|=|2(a+b+c)a+b+ca+b+cc+acaa+bbc| (C1àC1 + C2 + C3).

= (a + b + c)|211c+acaa+bbc|(Taking a + b + c common from R1).

= (a + b + c)|0110caacbc| (C1àC1 – C2 – C3)

= (a + b + c)(a – c) |11ca| = (a + b + c)(a – c)(a – c)

= (a + b + c)(a – c)2= R.H.S. 

(vi)|abc2a2a2bbca2b2c2ccab|= (a + b + c)3 

Solution:

L.H.S. = |abc2a2a2bbca2b2c2ccab|

=|a+b+ca+b+ca+b+c2bbca2b2c2ccab| (R1àR1 + R2 + R3).

= (a + b + c) |1112bbca2b2c2ccab|

= (a + b + c)|0110bca2bc+a+b2ccab| (C1àC1 – C3)

= (a + b + c)2|11bca2b|

= (a + b + c)2(2b – b + c + a) = (a + b + c)3 = R.H.S.

 

(vii) |1+a1a2a3a11+a2a3a1a21+a3|= 1 + a1 + a2 + a3

Solution:

L.H.S. = |1+a1a2a3a11+a2a3a1a21+a3|=|1+a1+a2+a3a2a31+a1+a2+a31+a2a31+a1+a2+a3a2a+a3| (C1àC1 + C2 + C3).

= (1 + a1 + a2 + a3) |1a2a311+a2a31a21+a3|

= (1 + a1 + a2 + a3)|00111+a2a31a21+a3| (R1àR1– R3)

= –(1 + a1 + a2 + a3)|11+a21a2|

= –(1 + a1 + a2 + a3)(a2 – 1 – a2) = 1 + a1 + a2 + a3 = R.H.S.

 

(viii) |1+x1111+y1111+z|= xyz(1x+1y+1z+1)

Solution:

L.H.S. = |1+x1111+y1111+z|

=xyz.|1+xx1y1z1x1+yy1z1x1y1+zz|

= xyz.|1x+11y1z1x1y+11z1x1y1z+1|

= xyz.|1x+1+1y+1z1y1z1x+1y+1+1z1y+11z1x+1y+1z+11y1z+1| (C1àC1 + C2 + C3)

= xyz.(1x+1y+1z+1)|11y1z11y+11z11y1z+1|

= xyz.(1x+1y+1z+1)|00111y+11z11y1z+1|  (R1àR1 – R3)

= –xyz (1x+1y+1z+1)|11y+111y|

= –xyz (1x+1y+1z+1){1y1y1}

= xyz(1x+1y+1z+1) = R.H.S.

 

(ix)|a2bcc2+aca2+abb2acabb2+bcc2|= 4a2b2c2

Solution:

L.H.S. = |a2bcc2+aca2+abb2acabb2+bcc2|

=abc.|acc+aa+bbabb+cc|

= abc.|accacc+aa+bbababbccb+cc|

=abc.|2ccc+a0ba2cb+cc|

abc.|2ccc+a0ba0ba| (CàC3 – C1)

= abc(–2c) |baba| = –2abc2(–ab – ab)

= – 2abc2(–2ab) = 4a2b2c2 = R.H.S. 

(x)xyzxyz|x2+1xyxzxyy2+1yzxzyzz2+1|= (1 + x2 + y2 + z2)

Solution:

L.H.S. = xyzxyz|x2+1xyxzxyy2+1yzxzyzz2+1|

=1xyz.|x(x2+1)x2yx2zxy2y(y2+1)y2zxz2yz2z(z2+1)|

= 1xyz.xyz|x2+1x2x2y2y2+1y2z2z2z2+1|

=|1+x2+y2+z21+x2+y2+z21+x2+y2+z2y2y2+1y2z2z2z2+1|

(1+x2+y2+z2)|111y2y2+1y2z2z2z2+1|(1+x2+y2+z2)|100y210z201|(C2C2C1C3C3C1)

= (1+x2+y2+z2)|1001|

=(1+x2+y2+z2)(1 – 0) = (1 + x2 + y2 + z2) = R.H.S.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.

Ad blocker detected!

We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.