Exercise 8.2
Solve the following equations from exercise 1 to 10.
1.
a. 4cos2x = 1
Solution:
Here, 4cos2x = 1
Or, cos2x = $\frac{1}{4}$
Or, cos2x = ${\left( { \pm \frac{1}{2}}
\right)^2}$
Or, cos2x = cos2$\frac{{\rm{\pi
}}}{3}$.
So, x = nπ $ \pm $$\frac{{\rm{\pi }}}{3}$, n ԑ
Z [cos2x = cos2α àx = nπ $ \pm $ α]
b. cos 2x – sinx = 0
Solution:
Here, cos 2x – sinx = 0
Or, cos 2x = cos $\left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}}
\right)$
So, 2x = 2nπ $ \pm $$\left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}}
\right)$
Or, 2x = 2nπ + $\frac{{\rm{\pi }}}{2}$–
x
and 2x = 2nπ – $\frac{{\rm{\pi }}}{2}$ + x
Or, 3x = (4n + 1) $\frac{{\rm{\pi
}}}{2}$
and x = (4n – 1) $\frac{{\rm{\pi }}}{2}$.
So, x = (4n + 1)$\frac{{\rm{\pi }}}{6}$, (4n – 1)$\frac{{\rm{\pi
}}}{2}$, n ԑ Z.
c. 2 sin2x = sinx
Solution:
Here, 2 sin2x = sinx
Or, 4sinx cosx – sinx = 0
Or, sinx (4cosx – 1) = 0
Either, sinx = 0
So, x = nπ
Or, 4cosx – 1 = 0
Or, cosx = $\frac{1}{4}$
Or, cosx = cosα [cosx = $\frac{1}{4}$]
So, x = 2nπ $ \pm $ α.
So, x = 2nπ $ \pm $ cos–1$\frac{1}{4}$ n ԑ Z.
d. sin2x + sinx = 0
Solution:
Here, sin2x + sinx = 0
Or, 2 sinx.cosx + sinx = 0
Or, sinx(2cosx + 1) = 0
Either, sinx = 0
So, x = nπ.
Or, 2cosx + 1 = 0
Or, cosx = $ - \frac{1}{2}$ = cos$\frac{{2{\rm{\pi }}}}{3}$
So, x = 2nπ $ \pm $$\frac{{2{\rm{\pi }}}}{3}$ = (6n$ \pm $
2) $\frac{{\rm{\pi }}}{3}$
Hence, x = nπ, (6n$ \pm $ 2) $\frac{{\rm{\pi }}}{3}$, n ԑ Z.
2.
a. sin2x – cosx = 1
Solution:
Here, sin2x – cosx = 1
Or, –cosx(cosx + 1) = 0.
So, cosx(cosx + 1) = 0
Either, cos x = 0
Or, cosx = cos(2n + 1) $\frac{{\rm{\pi }}}{2}$
So, x = (2n + 1) $\frac{{\rm{\pi }}}{2}$.
Or, cosx + 1 = 0
Or, cosx = –1.
So,cosx = cos(2n + 1)π
So, x = (2n + 1)π.
Hence, x = (2n + 1) $\frac{{\rm{\pi }}}{2}$, (2n + 1)π, n ԑ
Z.
b. cos2x – sinx + 5 = 0
Solution:
Here, cos2x – sinx + 5 = 0
Or, 1 – sin2x – sinx + 5 = 0
Or, sin2x + sinx – 6 = 0
Or, sin2x + 3sinx – 2sinx – 6= 0
Or, sinx(sinx + 3) – 2(sinx + 3) = 0
Or, (sinx + 3)(sinx – 2) = 0
Either, sinx – 2 = 0
SO, sinx = 2 > 1.
Or, sinx + 3 = 0
So, sinx = –3 <–1.
Since, –1 ≤ sinx ≤ 1, the given equation does not have a
solution.
c. 4cosx + secx – 4 = 0
Solution:
Here, 4cosx + secx – 4 = 0
Or, 4cos2x + 1 – 4cosx = 0
Or, 4cos2x – 4cosx + 1 = 0
Or, (2cosx – 1)2 = 0.
Or, 2cosx – 1 = 0
Or, cos x = $\frac{1}{2}$.
Or, cosx = cos $\frac{{\rm{\pi }}}{3}$
So, x = $\left( {2{\rm{n\pi }} \pm \frac{{\rm{\pi }}}{3}}
\right),$n ԑ Z.
d. 2sinx + cotx – cosec x = 0
Here, 2sinx + cotx – cosec x = 0
Or, 2sinx + $\frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$ –
$\frac{1}{{{\rm{sinx}}}}$ = 0
Or, 2sin2x + cosx – 1 = 0.
Or, 2(1 – cos2x) + cosx –1 = 0
Or, –2cos2x + cosx + 1 = 0
So, 2cos2x – cosx – 1 = 0
Or, 2cos2x – 2cosx + cosx – 1 = 0
Or, 2cosx (cosx – 1) + 1(cosx – 1) = 0
Or, (cosx – 1)(2cosx + 1) = 0
Either, 2cosx + 1 = 0
So, cos x = $ - \frac{1}{2}$
Or, cos x = cos$\frac{{2{\rm{\pi }}}}{3}$
So, x = 2nπ $ \pm \frac{{2{\rm{\pi }}}}{3}$ = (6n $ \pm $ 2)
$\frac{{\rm{\pi }}}{3}$.
Or, cosx – 1 = 0
Or, cosx = 1
Or, cosx = cos 0
So, x = 2nπ $ \pm $ 0 = 2nπ
Hence, x = (6n $ \pm $ 2) $\frac{{\rm{\pi }}}{3}$, 2nπ, n ԑ
Z.
3.
a. 2cos2x + 4sin2x = 3
Solution:
Here, 2cos2x + 4sin2x = 3
Or, 2cos2x + 4(1 – cos2x) – 3 =
0
Or, 2cos2x + 4 – 4 cos2x – 3 = 0
Or, –2cos2x + 1 = 0
Or, cos2 x = $\frac{1}{2}$.
Or, cos2x = ${\left( { \pm \frac{1}{{\sqrt 2 }}}
\right)^2}$ = cos2$\frac{{\rm{\pi }}}{4}$
So, x = nπ $ \pm $$\frac{{\rm{\pi }}}{4}$, n ԑ Z.
b. 7sin2x + 3cos2x = 4
Solution:
Here, 7sin2x + 3cos2x = 4
Or, 7(1 – cos2x) + 3cos2x – 4 = 0
Or, 7 – 7 cos2x + 3cos2x – 4 = 0
Or, –4cos2x + 3 = 0
Or, cos2x = $\frac{3}{4}$ = $\left( { \pm
\frac{{\sqrt 3 }}{2}} \right)$ = cos2$\frac{{\rm{\pi }}}{6}$.
So. x = nπ, $ \pm \frac{{\rm{\pi }}}{6}$, n ԑ Z.
c. tanx + cotx - 2cosec x =0
Solution:
Here, tanx + cotx = 2cosec x
Or, $\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$ +
$\frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$ = $\frac{2}{{{\rm{sinx}}}}$
Or, $\frac{{{{\sin }^2}{\rm{x}} + {{\cos
}^2}{\rm{x}}}}{{{\rm{sinx}}.{\rm{cosx}}}}$ = $\frac{2}{{{\rm{sinx}}}}$
Or, $\frac{1}{{{\rm{sinx}}.{\rm{cosx}}}} =
\frac{2}{{{\rm{sinx}}}}$
Or, 2sinx.cosx = sinx.
Or, sinx(2cosx – 1) = 9
Either, sinx = 0 = sin 0
So, x = nπ
Or, 2 cosx – 1 = 0
Or, cosx = $\frac{1}{2}$ = cos$\frac{{\rm{\pi }}}{3}$
SO, x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{3}$ = (6n $ \pm $ 1)
$\frac{{\rm{\pi }}}{3}$.
Hence, x = nπ, (6n$ \pm $1) $\frac{{\rm{\pi }}}{3}$, n ԑ Z.
d. tan2x = secx + 1
Solution:
Here, tan2x = secx + 1.
Or, sec2x – 1 = sec x + 1
Or, sec2x – secx – 2 = 0
Or, sec2x – 2secx + secx – 2 = 0
Or, secx(secx – 2) + 1(secx – 2) = 0
Or, (secx – 2)(secx + 1) = 0
Either, secx – 2 = 0
So, sec x = 2
Or, cosx = $\frac{1}{2}$ = cos$\frac{{\rm{\pi }}}{3}$
So, x = 2nπ $ \pm \frac{{\rm{\pi }}}{3}$
Or, sec + 1 = 0
Or, sec = –1
Or, cosx = –1
So, x = (2n+1)π
Hence, x = (2n + 1)π, (6n$ \pm $1) $\frac{{\rm{\pi }}}{3}$.
4.
a. sinx + $\sqrt 3 $cosx = $\sqrt 2 $
Solution:
Here, sinx + $\sqrt 3 $cosx = $\sqrt 2 $
Or, Dividing by $\sqrt {{1^2} + {{\sqrt 3 }^2}} $ = 2, we
have,
Or, $\frac{1}{2}$sinx + $\frac{{\sqrt 3 }}{2}$cosx =
$\frac{{\sqrt 2 }}{2}$
Or, sin $\frac{{\rm{\pi }}}{6}$ sinx + cos $\frac{{\rm{\pi }}}{6}$
cosx = $\frac{1}{{\sqrt 2 }}$
Or, cos $\left( {{\rm{x}} - \frac{{\rm{\pi }}}{6}} \right)$
= cos $\frac{{\rm{\pi }}}{4}$
So, x – $\frac{{\rm{\pi }}}{6}$ = 2nπ $ \pm \frac{{\rm{\pi
}}}{4}$.
Hence, x = 2nπ + $\frac{{\rm{\pi }}}{6}$$ \pm
$$\frac{{\rm{\pi }}}{4}$, n ԑ Z.
b. $\sqrt 3 $sin – cosx = $\sqrt 2 $
Solution:
Or, $\sqrt 3 $sin – cosx = $\sqrt 2 $
Or, $\frac{{\sqrt 3 }}{2}$sinx – $\frac{1}{2}$ cosx =
$\frac{1}{{\sqrt 2 }}$
Or, sin $\frac{{\rm{\pi }}}{3}$ sinx – cos$\frac{{\rm{\pi
}}}{3}$ cosx = $\frac{1}{{\sqrt 2 }}$
Or, –cos $\left( {{\rm{x}} + \frac{{\rm{\pi }}}{3}} \right)$
= $\frac{1}{{\sqrt 2 }}$
Or, cos$\left( {{\rm{x}} + \frac{{\rm{\pi }}}{3}} \right)$ =
$ - \frac{1}{{\sqrt 2 }}$ = cos $\frac{{3{\rm{\pi }}}}{4}$
So, x + $\frac{{\rm{\pi }}}{3}$ = 2nπ $ \pm \frac{{3{\rm{\pi
}}}}{4}$.
So, x = 2nπ – $\frac{{\rm{\pi }}}{3}$$ \pm \frac{{3{\rm{\pi
}}}}{4}$, n ԑ Z.
Since, 0 ≤ x ≤ π, So,
For n = 0,
X = $ - \frac{{\rm{\pi }}}{3} \pm \frac{{3{\rm{\pi }}}}{4}$
= $ - \frac{{\rm{\pi }}}{3} + \frac{{3{\rm{\pi }}}}{4}, - \frac{{\rm{\pi }}}{3}
- \frac{{3{\rm{\pi }}}}{4}$ = $\frac{{5{\rm{\pi }}}}{{12}}$
For, n = 1.
X = $2{\rm{\pi }} - \frac{{\rm{\pi }}}{3} \pm
\frac{{3{\rm{\pi }}}}{4}$ = $2{\rm{\pi }} - \frac{{\rm{\pi }}}{3} +
\frac{{3{\rm{\pi }}}}{4},2{\rm{\pi }} - \frac{{\rm{\pi }}}{3} -
\frac{{3{\rm{\pi }}}}{4}$
= $\frac{{24{\rm{\pi }} - 4{\rm{\pi }} + 9{\rm{\pi
}}}}{{12}}$, $\frac{{24{\rm{\pi }} - 4{\rm{\pi }} - 9{\rm{\pi }}}}{{12}}$
= $\frac{{29{\rm{\pi }}}}{{12}}$, $\frac{{11{\rm{\pi
}}}}{{12}}$
Since, x = $\frac{{29{\rm{\pi }}}}{{12}}$ does not lie in
[0,π]
So, x = $\frac{{5{\rm{\pi }}}}{{12}},\frac{{11{\rm{\pi
}}}}{{12}}.$
c. cosx + $\sqrt 3 $sinx = $\sqrt 2 $
Solution:
Here, cosx + $\sqrt 3 $sinx = $\sqrt 2 $
Or. $\frac{1}{2}$ cosx + $\frac{{\sqrt 3 }}{2}$sinx =
$\frac{{\sqrt 2 }}{2}$ [Dividing by $\sqrt {{1^2} +
{{\left( {\sqrt 3 } \right)}^2}} $= 2 ]
Or, cos $\frac{{\rm{\pi }}}{3}$ cosx + sin $\frac{{\rm{\pi
}}}{3}$ sinx = $\frac{1}{{\sqrt 2 }}$
Or, cos $\left( {{\rm{x}} - \frac{{\rm{\pi }}}{3}} \right)$
= cos $\frac{{\rm{\pi }}}{4}$
Or, x – $\frac{{\rm{\pi }}}{3}$ = 2nπ $ \pm $$\frac{{\rm{\pi
}}}{4}$
Hence, x = 2nπ + $\frac{{\rm{\pi }}}{3}$$ \pm \frac{{\rm{\pi
}}}{4}$, n ԑ Z.
d. sinx + cosx = $\sqrt 2 $
Solution:
Here, sinx + cosx = $\sqrt 2 $
Or, $\frac{1}{{\sqrt 2 }}$sinx + $\frac{1}{{\sqrt 2 }}$cosx
= $\frac{{\sqrt 2 }}{{\sqrt 2 }}$ [Dividing
$\sqrt {{1^2} + {1^2}} $ = $\sqrt 2 $]
Or, cosx cos $\frac{{\rm{\pi }}}{4}$ + sinx
sin$\frac{{\rm{\pi }}}{4}$ = 1
Or, cos$\left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)$ =
cos0
So, x – $\frac{{\rm{\pi }}}{4}$ = 2nπ $ \pm $ 0.
So, x = 2nπ + $\frac{{\rm{\pi }}}{4}$, n ԑ Z
Since, –2π ≤ x ≤ 2π, so
For n = 0, x = $\frac{{\rm{\pi }}}{4}$
For, n = –1, x = –2π + $\frac{{\rm{\pi }}}{4}$ = $ -
\frac{{7{\rm{\pi }}}}{4}$
Hence, x = $\frac{{\rm{\pi }}}{4}$, $ - \frac{{7{\rm{\pi
}}}}{4}$.
5.
a. sin3x + sinx = 0
Solution:
Here, sin3x + sinx = 0.
Or, 2 sin$\frac{{3{\rm{x}} + {\rm{x}}}}{2}$.
cos$\frac{{3{\rm{x}} - {\rm{x}}}}{2}$ = 0.
Or, sin2x.cosx = 0
Either, sin2x = 0
So, 2x = nπ
So, x $ = \frac{{{\rm{n\pi }}}}{2}$
Or. Cosx = 0 = cos $\frac{{\rm{\pi }}}{2}$.
So, x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$ = (4n $ \pm $ 1)
= $\frac{{\rm{\pi }}}{2}$.
Hence, x = $\frac{{{\rm{n\pi }}}}{2}$, (4n$ \pm $1)
$\frac{{\rm{\pi }}}{2}$.
b. sin3x + sinx = sin2x
Solution:
Here, sin3x + sinx = sin2x
Or, 2 sin$\frac{{3{\rm{x}} + {\rm{x}}}}{2}$. cos$\frac{{2{\rm{x}}
- {\rm{x}}}}{2}$– sin2x = 0
Or, 2sin2x. cosx – sin2x = 0
Or, sin2x (2cosx – 1) = 0
Either, sin2x = 0 = sin 0
Or, 2x = nπ
So, x = $\frac{{{\rm{n\pi }}}}{2}$.
Or, 2cosx – 1 = 0
Or, cosx = $\frac{1}{2}$
Or, cosx = cos $\frac{{\rm{\pi }}}{3}$.
So, x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{3}$ = (6n$ \pm $1)
$\frac{{\rm{\pi }}}{3}$
Hence, x = $\frac{{{\rm{n\pi }}}}{2}$, (6n$ \pm
$1)$\frac{{\rm{\pi }}}{3}$, n ԑ Z.
c. cos3x – cosx = 0
Solution:
Here, cos3x – cosx = 0
Or, –2sin $\frac{{3{\rm{x}} + {\rm{x}}}}{2}$ .
sin$\frac{{3{\rm{x}} - {\rm{x}}}}{2}$ = 0
Or, sin2x.sinx = 0
Either, sin2x.sinx = 0
Or, 2x = nπ.
So, x = $\frac{{{\rm{n\pi }}}}{2}$.
Or, sinx = 0 = sin0.
So, x = nπ.
Hence, x = nπ, $\frac{{{\rm{n\pi }}}}{2}$, n ԑ Z.
d. tan2x + tanx = 0
Solution:
Here, tan2x + tanx = 0
Or, $\frac{{{\rm{sin}}2{\rm{x}}}}{{{\rm{cos}}2{\rm{x}}}}$ +
$\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$ = 0
Or, sin2x.cosx + cos2x.sinx = 0
Or, sin(2x + x) = 0
Or, sin3x = 0 = sin 0.
So. 3x = nπ + 0
So, x = ${\rm{n\pi }}$, $\frac{{{\rm{n\pi }}}}{2}$, n ԑ Z.
Since, $ - \frac{{\rm{\pi }}}{2}$ ≤ x ≤ $\frac{{\rm{\pi
}}}{2}$, so,
i. For n = 0 àx = 0
ii. For n = –1 à x = $ - \frac{{\rm{\pi }}}{3}$
iii. For n = 1 à x = $\frac{{\rm{\pi }}}{3}$.
Hence, x = $ - \frac{{\rm{\pi }}}{3}$, 0, $\frac{{\rm{\pi
}}}{3}$.
6.
a. 2 cos2x + sinx.cosx – sin2x = 0
Solution:
Here, 2 cos2x + sinx.cosx – sin2x = 0.
Or, 2cos2x + 2sinx.cosx – sinx.cosx – sin2x
= 0
Or, 2cosx(cosx + sinx) – sin(cosx + sinx) = 0
Or, (2cosx – sinx)(cosx + sinx) = 0
Either, 2cosx – sinx = 0
Or, sinx = 2cosx.
Or. $\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$ = 2
Or, tanx = tanα [tanα = 2]
Or, x = nπ + α.
So, x = nπ + tan–12.
Or, cosx + sinx = 0
Or, sinx = –cosx
Or. $\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$ = –1
Or, tanx = tan$\left( { - \frac{{\rm{\pi }}}{4}} \right)$
So, x = nπ + $\left( { - \frac{{\rm{\pi }}}{4}} \right)$
Hence, x = nπ – $\frac{{\rm{\pi }}}{4}$, nπ + tan–12,
n ԑ Z.
b. Sin2x – 4sinx – cosx + 2 = 0
Solution:
Sin2x – 4sinx – cosx + 2 = 0
Or, 2sinx.cosx – cosx – 4sinx + 2 = 0
Or, cosx(2sinx – 1) – 2(2sinx – 1) = 0
Or, (2sinx – 1)(cosx – 2) = 0
Either, 2sinx – 1 = 0
Or, sinx = $\frac{1}{2}$ = sin $\frac{{\rm{\pi }}}{6}$.
So, x = nπ + (–1)n$\frac{{\rm{\pi }}}{6}.$
Or, cosx – 2 = 0
Cos x = 2, is impossible.
Hence, x = nπ + (–1)n$\frac{{\rm{\pi }}}{6}$ , n ԑ
Z.
7.
a. sin9θ = sinθ
Solution:
Here, sin9θ = sinθ
Or, sin9θ – sinθ = 0
Or, 2 cos$\frac{{9\theta + \theta }}{2}$
.sin$\frac{{9\theta - \theta }}{2}$ = 0
Or, cos5θ .sin4θ = 0
Either, sin4θ = 0 = sin 0.
So, 4θ = nπ
So, θ= $\frac{{{\rm{n\pi }}}}{4}$.
Or, cos5θ = 0 = cos $\frac{{\rm{\pi }}}{2}$.
Or, 5θ = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$
Or, θ= (4n$ \pm $1)$\frac{{\rm{\pi }}}{{10}}$.
Hence, θ = $\frac{{{\rm{n\pi }}}}{4}$, (4n$ \pm $1)
$\frac{{\rm{\pi }}}{{10}}$, n ԑ Z.
b. tan5θ = cot2θ
Here,
tan5θ = cot2θ
or.tan5θ = tan $\left( {\frac{{\rm{\pi }}}{2} - 2\theta }
\right)$
or, 5θ = nπ $ + \left( {\frac{{\rm{\pi }}}{2} - 2\theta }
\right)$
or, 5θ + 2θ = (2n + 1) $\frac{{\rm{\pi }}}{2}$
So, θ= (2n + 1)${\rm{\: }}\frac{{\rm{\pi }}}{{14}}$, n ԑ Z.
c. tan2x – cotx = 0
Solution:
tan2x – cotx = 0
Or, tan 2x = tan $\left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}}
\right)$
Or, 2x = nπ + $\left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}}
\right)$
Or, 3x = (2n + 1) $\frac{{\rm{\pi }}}{2}$
So, x = (2n + 1)$\frac{{\rm{\pi }}}{6}$, n ԑ Z.
OR,
Tan2x – cotx = 9
Or, $\frac{{{\rm{sin}}2{\rm{\pi }}}}{{{\rm{cos}}2{\rm{x}}}}$
–$\frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$ = 0
Or, sin2x.sinx – cos2x.cosx = 0
Or, cos2x, cosx – sin2x.sinx = 0
Or, cos(2x + x) = 0
Or. Cos3x = cos $\frac{{\rm{\pi }}}{2}$
So, 3x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$.
So, x = (4n$ \pm $1) $\frac{{\rm{\pi }}}{6}$, n ԑ Z.
d. tan mθ + cot nθ = 0
Solution:
tan mθ + cot nθ = 0
Or. $\frac{{\sin {\rm{m}}\theta }}{{\cos {\rm{m}}\theta }}$
+ $\frac{{\cos {\rm{n}}\theta}}{{\sin {\rm{n}}\theta }}$ = 0.
Or, sin mθ. Sin nθ + cos mθ .cos nθ = 0
Or, cos (mθ – nθ) = 0
Or, cos (mθ – nθ) = cos $\frac{{\rm{\pi }}}{2}$
Or, (m – n)θ = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$.
So, θ = $\frac{{\left( {4{\rm{n}} \pm } \right){\rm{\pi
}}}}{{2\left( {{\rm{m}} - {\rm{n}}}\right)}}$, n ԑ Z.
8.
a. cosθ + cos2θ + cos3θ = 0
Solution:
Here, cosθ + cos2θ + cos3θ = 0
Or, (cos3θ + cosθ) + cos2θ = 0.
Or, 2cos $\frac{{3\theta + 2\theta }}{2}$ .
cos$\frac{{3\theta - 2\theta }}{2}$ + cos2θ = 0
Or, 2cos2θ.cosθ + cos2θ = 0
Or, cos θ(2cosθ + 1) = 0
Either, cos2θ = 0 = cos $\frac{{\rm{\pi }}}{2}$.
So, 2θ = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$
So, θ = (4n $ \pm $ 1) $\frac{{\rm{\pi }}}{4}$
Or, 2cosθ + 1 = 0.
Or, cosθ = $ - \frac{1}{2}$ = cos $\frac{{2{\rm{\pi }}}}{3}$
So, θ = 2nπ $ \pm $$\frac{{2{\rm{\pi }}}}{3}$ = (6n $ \pm $
2) $\frac{{\rm{\pi }}}{3}$.
Hence, θ = (4n $ \pm $ 1) $\frac{{\rm{\pi }}}{4}$, (6n $ \pm
$ 2) $\frac{{\rm{\pi }}}{3}$, n ԑ Z.
b. cosθ – sin3θ = cos2θ
Solution:
Here, cosθ – sin3θ = cos2θ.
Or, (cosθ – cos2θ) – sin3θ = 0
Or, 2 sin $\frac{{\theta + 2\theta }}{2}$. Sin
$\frac{{2\theta - \theta }}{2}$– 2sin $\frac{{3\theta}}{2}$. Cos
$\frac{{3\theta }}{2}$ = 0
Or. 2 sin $\frac{{3\theta }}{2}$$\left( {\sin \frac{\theta
}{2} - \cos \frac{{3\theta }}{2}} \right)$ = 0
Either, sin $\frac{{3\theta }}{2}$ = 0 = sin 0.
So, $\frac{{3\theta }}{2}$ = nπ.
So, θ = $\frac{{2{\rm{n\pi }}}}{3}$.
Or, sin $\frac{\theta }{2}$ – cos $\frac{{3\theta }}{2}$ = 0
Or, cos $\frac{{3\theta }}{2}$ = sin $\frac{\theta }{2}$ =
cos $\left( {\frac{{\rm{\pi }}}{2} - \frac{\theta }{2}} \right)$
So, $\frac{{3\theta }}{2}$ = 2nπ $ \pm $$\left(
{\frac{{\rm{\pi }}}{2} - \frac{\theta }{2}} \right)$.
Or, $\frac{{3\theta }}{2}$ = 2nπ + $\frac{{\rm{\pi }}}{2}$ –
$\frac{\theta }{2}$ and $\frac{{3\theta }}{2}$ = 2nπ – $\frac{{\rm{\pi }}}{2}$
+ $\frac{\theta }{2}$.
Or, $\frac{{3\theta }}{2}$ + $\frac{\theta }{2}$ = 2nπ +
$\frac{{\rm{\pi }}}{2}$ and $\frac{{3\theta }}{2}$ – $\frac{\theta }{2}$ = 2nπ
– $\frac{{\rm{\pi }}}{2}$.
Hence, θ= $\frac{{2{\rm{n\pi }}}}{3}$, (4n + 1)
$\frac{{\rm{\pi }}}{4}$, (4n – 1) $\frac{{\rm{\pi }}}{2}$, n ԑ Z.
c. tan θ + tan 2θ = tan 3θ
Solution:
Here, tan θ + tan 2θ = tan 3θ.
Or, tanθ + tan2θ – tan(θ + 2θ) = 0
Or, (tanθ + tan2θ) – $\frac{{{\rm{tan}}\theta +
{\rm{tan}}2\theta }}{{1 - {\rm{tan}}\theta .{\rm{tan}}2\theta }}{\rm{\: \: }}$=
0
Or, (tanθ + tan2θ) (1 – tanθ.tan2θ – 1) = 0
So, tanθ.tan2θ(tanθ + tan2θ) = 0
Either, tan θ = 0 = tan 0.
So, θ = nπ.
Or, tan 2θ = 0 = tan 0.
So, 2θ = nπ.
So, θ = $\frac{{{\rm{n\pi }}}}{2}$.
Or, tan θ + tan2θ = 0.
Or, tan θ = –tanθ = tan(–θ)
So, 2θ = nπ + (–θ)
SO, 2θ + θ = nπ
SO, θ = $\frac{{{\rm{n\pi }}}}{3}$.
Hence, θ = nπ, $\frac{{{\rm{n\pi }}}}{2}$, $\frac{{{\rm{n\pi
}}}}{3}$, n ԑ Z.
d. 2sinx.sin3x = 1
Solution:
Here, 2sinx.sin3x = 1
Or, 2sinx(3sinx – 4sin3x) – 1 = 0.
Or, 6sin2x – 8sin4x– 1 = 0
Or, 8sin4x – 6sin2x + 1 = 0.
So, sin2x = $\frac{{6 \pm \sqrt {36 - 4.8.1}
}}{{2.8}}$
Or, sin2x = $\frac{{6 \pm 2}}{{16}}$ = $\frac{{6
+ 2}}{{16}}$. $\frac{{6 - 2}}{{16}}$
So, sin2x = $\frac{1}{2}$, $\frac{1}{4}$.
Now, sin2 x = $\frac{1}{2}$ = ${\left( { \pm
\frac{1}{{\sqrt 2 }}} \right)^2}$ = sin2$\frac{{\rm{\pi }}}{4}$.
So, x = nπ $ \pm $$\frac{{\rm{\pi }}}{4}$
[sin2x = sin2 α à x = nπ*a]
Or, sin2x = $\frac{1}{4}$ = ${\left( { +
\frac{1}{2}} \right)^2}$ = sin2$\frac{{\rm{\pi }}}{6}$.
So, x = nπ $ \pm $$\frac{{\rm{\pi }}}{6}$.
Here, x = nπ $ \pm $$\frac{{\rm{\pi }}}{6}$, nπ $ \pm
$$\frac{{\rm{\pi }}}{4}$, n ԑ Z.
9.
a. cot2x – cosecx – 1 = 0
Solution:
Here, cot2x – cosecx – 1 = 0
Or, cosec2x – 1 – cosecx– 1 = 0
Or, cosec2x – cosecx – 2 = 0
Or, cosecx (cosecx – 2) + 1(cosecx – 2) = 0
Or, (cosec x – 2)(cosecx + 1) = 0
Either, cosec x – 2 = 0
Or, cosec x = 2.
Or, sinx = $\frac{1}{2}{\rm{\: }}$= sin $\frac{{\rm{\pi
}}}{6}$.
So, x = nπ + (–1)n$\frac{{\rm{\pi }}}{6}$.
Or, cosecx + 1 = 0
Or, cosecx = –1
So, sinx = –1
So, x = (4n –1)$\frac{{\rm{\pi }}}{2}$
Hence, x = nπ + (–1)n. $\frac{{\rm{\pi }}}{6}$,
(4n – 1)$\frac{{\rm{\pi }}}{2}$, n ԑ Z.
b. 2cosx + 1 = sinx
Solution:
Here, 2cosx + 1 = sinx
Squaring we have, 4cos2x + 4cosx + 1 = 1 – cos2x
Or, 5cos2x + 4cosx = 0
Or, cosx(5cosx + 4 ) =0
Either, cosx = 0
Or, cosx = cos $\frac{{\rm{\pi }}}{2}$.
So, x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$ = $\left(
{4{\rm{n}} \pm 1} \right)$$\frac{{\rm{\pi }}}{2}$.
Or, 5cosx + 4 = 0
Or, cos x = $ - \frac{4}{5}$.
Or. Cosx = cosα [cosα = $ - \frac{4}{5}$]
Or, x = 2nπ $ \pm $ α
Hence, x = 2nπ $ \pm $ cos–1$\left( { -
\frac{4}{5}} \right)$, (4n$ \pm $1) $\frac{{\rm{\pi }}}{2}$.
c. secx . tanx = $\sqrt 2 $
Soln;
here, secx . tanx = $\sqrt 2 $
Or, sec2x. tan2x = 2 [squaring on both
side.]
Or, (1 + tan2x)tan2x = 2
Or, tan4x + tan2x – 2 = 0
Or, tan4 x + 2tan2x – tan2x
– 2 = 0
Or, tan2x (tan2x + 2) – 1(tan2x
+ 2) = 0
Or, (tan2x + 2)(tan2x – 1) = 0
Either, tan2x – 1 = 0
Or, tan2x = 1 = ${\left( { \pm 1} \right)^2}$ =
tan2$\left( {\frac{{\rm{\pi }}}{4}} \right)$.
So, x = nπ $ \pm $$\frac{{\rm{\pi }}}{4}$.
Or, tan2x + 2 = 0
So, tan2 = –2 [is imaginary]
Hence, x = nπ $ \pm $$\frac{{\rm{\pi }}}{4}$, n ԑ Z.
d. 4sin4x – cos22x = 0
Solution:
Here, 4sin4x – cos22x = 0
Or, (2sin2x)2 – cos22x
= 0
Or, (1 – cos2x)2 – cos22x = 0
Or, 1 – 2cos2x + cos22x – cos22x = 0
Or, 1 – 2cos2x = 0
Or, cos2x = $\frac{1}{2}$ = cos $\frac{{\rm{\pi
}}}{3}{\rm{\: }}$
Or, 2x = 2nπ $ \pm $$\frac{{\rm{\pi }}}{3}$.
Hence, x = (6n$ \pm $1) $\frac{{\rm{\pi }}}{6}$ , n ԑ Z.
10.
a. cos θ + cos 3θ + cos 5θ + cos 7θ = 0
Solution:
cos θ + cos 3θ + cos 5θ + cos 7θ = 0
(cos 7θ + cos θ) + (cos 5θ + cos 3θ) = 0
Or, 2 cos $\frac{{7\theta + \theta }}{2}$, cos
$\frac{{7\theta - \theta }}{2}$ + 2cos$\frac{{5\theta + 3\theta }}{2}$ ,
cos $\frac{{5\theta - 2\theta }}{2}$ = 0
Or, 2cos4θ.cos3θ + 2cos4θ.cosθ = 0
Or, cos4θ(cos3θ + cosθ) = 0
Or, cos 4θ. 2cos $\frac{{3\theta + \theta }}{2}$.cos
$\frac{{3\theta - \theta }}{2}$ = 0
So, cos 4θ. Cos 2θ. Cos θ= 0
Either, cos 4θ = 0 = cos $\frac{{\rm{\pi }}}{2}$.
So, 4θ = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$
SO, θ= (4n$ \pm $1) $\frac{{\rm{\pi }}}{8}$.
Or, cos 2θ = 0 = cos $\frac{{\rm{\pi }}}{2}$.
So, 2θ = 2nπ $ \pm {\rm{\: }}$$\frac{{\rm{\pi }}}{2}$
So, θ = (4n$ \pm $1) $\frac{{\rm{\pi }}}{4}$
Or, cosθ= 0 = cos$\frac{{\rm{\pi }}}{2}$
So, θ = 2nπ $ \pm $$\frac{{\rm{\pi }}}{2}$.
So, θ = (4n$ \pm $1) $\frac{{\rm{\pi }}}{2}$.
Hence, θ = (4n$ \pm $1) $\frac{{\rm{\pi }}}{2}$, (4n$ \pm
$1) $\frac{{\rm{\pi }}}{4}$, (4n$ \pm $1) $\frac{{\rm{\pi }}}{8}$, n ԑ Z.
b. tanθ + tan2θ + tan3θ = 0
Solution:
Here, tanθ + tan2θ + tan3θ = 0
Or, tan θ + tan2θ + tan(θ+2θ) = 0
Or, (tanθ + tan2θ) + $\frac{{{\rm{tan}}\theta +
{\rm{tan}}2\theta }}{{1 - {\rm{tan}}\theta .{\rm{tan}}2\theta }}$ = 0
Or, (tanθ + tan2θ)(1 – tanθ.tan2θ + 1) = 0
Or, (tanθ + tan2θ)(2 – tanθ.tan2θ) = 0
Either, tanθ + tan2θ = 0
Or, tan 2θ= –tanθ = tan(–θ)
So, 2θ = nπ + (–θ)
Or, 3θ= nπ
SO, θ= $\frac{{{\rm{n\pi }}}}{3}$
Or, 2 – tanθ, tan2θ = 0
Or, 2 – tan θ. $\frac{{2{\rm{tan}}\theta }}{{1 - {{\tan
}^2}\theta }}$ = 0
Or, 2 – 2tan2 θ – 2tan2 θ =
0
Or, 2(1 – 2tan2θ) = 0
Or, 1 – 2tan2θ = 0
Or, tan2θ= $\frac{1}{2}$
Or, tan2θ = tan2α
Or, tan2θ = tan2α
[tan2α = $\frac{1}{2}$]
SO, θ= nπ $ \pm $ α.
So, θ = nπ $ \pm {\rm{\: }}$tan–1$\left( {\frac{1}{{\sqrt
2 }}} \right)$ [tan2α = $\frac{1}{2}$]
And θ = $\frac{{{\rm{n\pi }}}}{3}$, n ԑ Z.
11. Find all the solution Tanθ – 3cotθ = 2tan3θ that lie
between 00 and 3600.
Solution:
Here the given equation is:
Tanθ – 3cotθ = 2tan3θ
Or, tanθ – $\frac{3}{{{\rm{tan}}\theta }}$ = $\frac{{2\left(
{3{\rm{tan}}\theta - {{\tan }^3}\theta } \right)}}{{1 - 3{{\tan
}^2}\theta }}$
Or, (tan2θ – 3)(1 – 3tan2 θ) =
2tanθ (3tanθ – tan3θ)
Or, tan2θ – 3tan4θ – 3 + 9tan2θ
= 6tan2θ – 2tan4θ.
Or, –tan4θ + 4tan2θ–3 = 0
Or, tan4θ – 4tan2θ + 3 = 0
Or, tan4θ – 3tan2θ – tan2 θ
+ 3 = 0
Or, tan2θ(tan2θ – 3) – 1(tan2θ
– 3)$.$
Or, (tan2θ – 3)(tan2θ – 1).
Either, tan3θ – 3 = 0.
Or, tanθ = $ \pm \sqrt 3 $
So, θ = 60°,24–°,120°,300°
Or, tan2θ – 1 = 0
Or, tanθ= $ \pm $1
So, θ= 45°,135°,225°,315°.
Hence, θ= 45°,60°,120°,135°,225°,240°,300°,315°.
I.e. θ= $\frac{{\rm{\pi }}}{4}$, $\frac{{\rm{\pi
}}}{3},\frac{{2{\rm{\pi }}}}{3},\frac{{3{\rm{\pi }}}}{3},\frac{{5{\rm{\pi
}}}}{4},\frac{{4{\rm{\pi }}}}{3},\frac{{5{\rm{\pi }}}}{3},\frac{{7{\rm{\pi
}}}}{4}$.
12. Find the solution of the equation (General solution not
required)
Solution:
Here, given equations are:
tanx + tany = 2…(i)
And 2 cosx. Cosy = 1 …(ii)
Now, from (i), we have,
$\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$ + $\frac{{{\rm{siny}}}}{{{\rm{cosy}}}}$ =
2
Or, sinxcosy + cosx. Siny = 2 cosx . cosy.
Or, sin(x + y) = 1 [from(2)]
Or, sin(x+y) = sin $\frac{{\rm{\pi }}}{2}$.
SO, x + y = $\frac{{\rm{\pi }}}{2}$ ….(3)
Again from (2) we have,
2cosx.cosy = 1
Or, cos(x+y) + cos(x – y) = cos 0
Or, cos $\frac{{\rm{\pi }}}{2}$ + cos(x –y) = cos 0[from(3)]
Or, 0 + cos(x – y) = cos 0.
So, x – y = 0…(4)
Now, adding (3) and (4), we have,
2x = $\frac{{\rm{\pi }}}{2}$
So, x = $\frac{{\rm{\pi }}}{4}$.
So, from (4), y = $\frac{{\rm{\pi }}}{4}$.
Hence, x = $\frac{{\rm{\pi }}}{4}$ , y = $\frac{{\rm{\pi
}}}{4}$.
13.
(i) tanθ + tan2θ + tan3θ = tanθ.tan2θ.tan3θ
Solution:
tanθ + tan2θ + tan3θ = tanθ.tan2θ.tan3θ
Or, (tanθ+tan2θ) + tan3θ(1– tanθ.tan2θ) = 0
Or, $\frac{{{\rm{tan}}\theta + {\rm{tan}}2\theta }}{{1
- {\rm{tan}}\theta .{\rm{tan}}2\theta }}$ + tan3θ = 0
Or, tan (θ + 2θ) + tan3θ = 0 [formula of
tan(A+B)]
Or, tan3θ + tan3θ = 0
Or, 2tan3θ = 0
Or, tan3θ = tan0
So, 3θ = nπ + 0
So, θ = $\frac{{{\rm{n\pi }}}}{3}$, n ԑ Z.
(ii) tanθ + tan2θ + tanθ.tan2θ = 1
Solution:
tanθ + tan2θ + tanθ.tan2θ = 1
Or, tanθ + tan2θ = 1 – tanθ.tan2θ
Or, $\frac{{{\rm{tan}}\theta + {\rm{tan}}2\theta }}{{1
- {\rm{tan}}\theta .{\rm{tan}}2\theta }}$ = 1
Or,tan(θ+2θ) = tan $\frac{{\rm{\pi }}}{4}$
Or. Tan 3θ = tan $\frac{{\rm{\pi }}}{4}$
Or, 3θ = nπ + $\frac{{\rm{\pi }}}{4}$.
So, θ= (4n + 1) $\frac{{\rm{\pi }}}{{12}}$, n ԑ Z.
(iii) tan$\left( {\frac{{\rm{\pi }}}{4} + \theta } \right)$
+ tan $\left( {\frac{{\rm{\pi }}}{4} - \theta } \right)$ = 4
Solution:
tan$\left( {\frac{{\rm{\pi }}}{4} + \theta } \right)$ + tan
$\left( {\frac{{\rm{\pi }}}{4} - \theta } \right)$ = 4.
Or, $\frac{{\tan \frac{{\rm{\pi }}}{4}{\rm{\: }} + \tan
\theta }}{{1 - \tan \frac{{\rm{\pi }}}{4}.{\rm{tan}}\theta }}$ + $\frac{{\tan
\frac{{\rm{\pi }}}{4} - \tan \theta }}{{1 + \tan \frac{{\rm{\pi
}}}{4}.{\rm{tan}}\theta }}$ = 4
Or, $\frac{{1 + {\rm{tan}}\theta }}{{1 - {\rm{tan}}\theta
}}$ + $\frac{{1 - {\rm{tan}}\theta }}{{1 + {\rm{tan}}\theta }}$ = 4
Or, (1+tanθ)2 + (1 – tanθ)2 =
4(1 – tanθ)(1 + tanθ)
or, 1 + 2tanθ + tan2θ + 1 – 2 tanθ + tan2θ
= 4 – 4 tan2θ
or, 6tan2θ = 2
or, tan2θ = $\frac{1}{3}$ = tan2$\left(
{\frac{{\rm{\pi }}}{6}} \right)$
So, θ = nπ $ \pm $$\frac{{\rm{\pi }}}{6}$, n ԑ Z.
14.
(i) Sin2x tanx + 1 = sin2x + tanx
Solution:
Given equation is:
Sin2x tanx + 1 = sin2x + tanx
Or, sin2x tanx – sin2x – tanx + 1 = 0
Or, sin2x(tanx – 1) – 1(tanx – 1) = 0
Or, (tanx – 1)(sin2x – 1) = 0
Either, tanx – 1 =0
Or, tanx = 1 = tan $\frac{{\rm{\pi }}}{4}$.
So, x = nπ + $\frac{{\rm{\pi }}}{4}$ = (4n +
1)$\frac{{\rm{\pi }}}{4}$.
OR, sin2x – 1 = 0
Or, sin2x = 1
So, 2x = (4n + 1) $\frac{{\rm{\pi }}}{2}$
SO, x = (4n + 1) $\frac{{\rm{\pi }}}{4}$
Hence, x = (4n + 1) $\frac{{\rm{\pi }}}{4}$, n ԑ Z.
(ii) 2sinxtanx + 1 = tanx + 2sinx
Solution:
Given equation is:
2sinxtanx + 1 = tanx + 2sinx.
Or. 2sinx tanx – tanx – 2sinx + 1 = 0
Or, tanx(2sinx – 1) – 1 (2sinx – 1) = 0
Or, (2sinx – 1)(tanx – 1) = 0
Either, tanx – 1 = 0
Or, tan x = 1 = tan $\frac{{\rm{\pi }}}{4}$.
So, x = nπ + $\frac{{\rm{\pi }}}{4}$ = (4n + 1)
$\frac{{\rm{\pi }}}{4}$.
Or, 2sinx – 1 = 0
Or, sinx = $\frac{1}{2}$ = sin $\frac{{\rm{\pi }}}{6}$
So, x = nπ+ (–1)n$\frac{{\rm{\pi }}}{6}$.
Hence, x = (4n + 1) $\frac{{\rm{\pi }}}{4}$, nπ+ (–1)n$\frac{{\rm{\pi
}}}{6}$., n ԑ Z.
15.
(i) Cos2x + sin2x = cosx + sinx
Solution:
Here given equation is:
Cos2x + sin2x = cosx + sinx
Or, $\frac{1}{{\sqrt 2 }}$cos2x + $\frac{1}{{\sqrt 2
}}$sin2x = $\frac{1}{{\sqrt 2 }}$cosx + $\frac{1}{{\sqrt 2 }}$sinx.
Or, cos $\frac{{\rm{\pi }}}{4}$cos2x + sin $\frac{{\rm{\pi
}}}{4}$ sin2x = cos $\frac{{\rm{\pi }}}{4}$ cosx + sin $\frac{{\rm{\pi }}}{4}$
sinx
Or, cos $\left( {2{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)$
= cos $\left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)$
SO, 2x – $\frac{{\rm{\pi }}}{4}$ = 2nπ $ \pm $$\left(
{{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)$
Or, $\{ \begin{array}{*{20}{c}}{2{\rm{x}} - \frac{{\rm{\pi
}}}{4} = 2{\rm{n\pi }} + {\rm{x}} - \frac{{\rm{\pi }}}{4}{\rm{\: \:
}}}\\{2{\rm{x}} - \frac{{\rm{\pi }}}{4} = 2{\rm{\pi n}} - {\rm{x}} +
\frac{{\rm{\pi }}}{4}{\rm{\: }}}\end{array}$
Or, $\{ \begin{array}{*{20}{c}}{{\rm{x}} = 2{\rm{n\pi \: \:
}}}\\{3{\rm{x}} = 2{\rm{n\pi }} + \frac{{\rm{\pi }}}{2}{\rm{\: }}}\end{array}$
So, x = 2nπ, (4n + 1) $\frac{{\rm{\pi }}}{6}$, n ԑ Z.
(ii) Cosx – sinx = cosα + sinα
Solution:
Given equation is:
Cosx – sinx = cosα + sinα.
Or, $\frac{1}{{\sqrt 2 }}$cosx –$\frac{1}{{\sqrt 2
}}$sinx = $\frac{1}{{\sqrt 2 }}$cosα + $\frac{1}{{\sqrt 2 }}$sinα.
Or, cos $\frac{{\rm{\pi }}}{4}$cosx – sin$\frac{{\rm{\pi
}}}{4}$sinx = cos$\frac{{\rm{\pi }}}{4}$cosα + sin$\frac{{\rm{\pi
}}}{4}$.sinα.
Or, cos$\left( {{\rm{x}} + \frac{{\rm{\pi }}}{4}} \right)$ =
cos$\left( {\alpha + \frac{{\rm{\pi }}}{4}} \right)$
SO, x + $\frac{{\rm{\pi }}}{4}$ = 2nπ $ \pm $$\left(
{\alpha - \frac{{\rm{\pi }}}{4}} \right)$
Thus,
Or, $\{ \begin{array}{*{20}{c}}{{\rm{x}} + \frac{{\rm{\pi
}}}{4} = 2{\rm{\pi n}} + \alpha - \frac{{\rm{\pi }}}{4}}\\{{\rm{x}} +
\frac{{\rm{\pi }}}{4} = 2{\rm{n\pi }} - \alpha + \frac{{\rm{\pi
}}}{4}}\end{array}$
Or, $\{ \begin{array}{*{20}{c}}{{\rm{x}} = 2{\rm{n\pi }} +
\alpha - \frac{{\rm{\pi }}}{2}}\\{{\rm{x}} = 2{\rm{n\pi }} - \alpha
{\rm{\: }}}\end{array}$
Hence, ${\rm{x}} = 2{\rm{n\pi }} - \alpha $, 2nπ –
$\frac{{\rm{\pi }}}{2}$ + α, n ԑ Z.