Limits and Continuity Exercise 16.2 | Basic Mathematics Solution [NEB UPDATED]

Exercise 16.2

Evaluate the following:

1) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}}}{{\rm{x}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}}}{{\rm{x}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$0 $\frac{{{\rm{sinax}}}}{{\rm{x}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$0 $\frac{{{\rm{sinax}}}}{{{\rm{ax}}}}.{\rm{a}}$ = 1.a = a.

 

2) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanbx}}}}{{\rm{x}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanbx}}}}{{\rm{x}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanbx}}}}{{\rm{x}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinbx}}}}{{{\rm{x}}.{\rm{cosbx}}}}.{\rm{a}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinbx}}}}{{{\rm{bx}}}}$.b.$\frac{1}{{{\rm{cosbx}}}}$ = 1.b.1 = b.

 

3) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinmx}}}}{{{\rm{sinnx}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinmx}}}}{{{\rm{sinnx}}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinmx}}}}{{{\rm{sinnx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinmx}}}}{{{\rm{mx}}}}.{\rm{m}}.\frac{1}{{\frac{{{\rm{sinnx}}}}{{{\rm{nx}}}}.{\rm{n}}}}$ = 1.m.$\frac{1}{{1.{\rm{n}}}}$ = $\frac{{\rm{m}}}{{\rm{n}}}$.

 

4) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanax}}}}{{{\rm{tanbx}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanax}}}}{{{\rm{tanbx}}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanax}}}}{{{\rm{tanbx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\frac{{{\rm{sinax}}}}{{{\rm{cosax}}}}}}{{\frac{{{\rm{sinbx}}}}{{{\rm{cosbx}}}}}}{\rm{\: }}$= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}}}{{{\rm{cosax}}}}.\frac{{{\rm{cosbx}}}}{{{\rm{sinbx}}}}$

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 = $\frac{{{\rm{sinax}}}}{{{\rm{ax}}}}.{\rm{a}}.\frac{1}{{{\rm{cosax}}}}.\frac{{{\rm{cosbx}}}}{{\frac{{{\rm{sinbx}}}}{{{\rm{bx}}}}.{\rm{b}}}}$ = 1.a.1.$\frac{1}{{1.{\rm{b}}}}$ = $\frac{{\rm{a}}}{{\rm{b}}}$.

 

5) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinpx}}}}{{\tan {\rm{qx}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinpx}}}}{{\tan {\rm{qx}}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinpx}}}}{{{\rm{tanqx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinpx}}.{\rm{cosqx}}}}{{{\rm{sinqx}}}}{\rm{\: }}$= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\frac{{{\rm{sinpx}}}}{{{\rm{px}}}}.{\rm{p}}.{\rm{cosqx}}}}{{\frac{{{\rm{sinqx}}}}{{{\rm{qx}}}}.{\rm{q}}}}$ = $\frac{{1.{\rm{p}}.1}}{{1.{\rm{q}}}}$ = $\frac{{\rm{p}}}{{\rm{q}}}$.

 

6) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{\rm{sin}}\left( {{\rm{x}} - {\rm{a}}} \right)}}{{{{\rm{x}}^2} - {{\rm{a}}^2}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{\rm{sin}}\left( {{\rm{x}} - {\rm{a}}} \right)}}{{{{\rm{x}}^2} - {{\rm{a}}^2}}}$

When x = a, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sin \left( {{\rm{x}} - {\rm{a}}} \right)}}{{{{\rm{x}}^2} - {{\rm{a}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sin \left( {{\rm{x}} - {\rm{a}}} \right)}}{{\left( {{\rm{x}} + {\rm{a}}} \right)\left( {{\rm{x}} - {\rm{a}}} \right)}}{\rm{\: }}$= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sin \left( {{\rm{x}} - {\rm{a}}} \right)}}{{{\rm{x}} - {\rm{a}}}}.\frac{1}{{{\rm{x}} + {\rm{a}}}}$ = $\left\{ {{\rm{\: }}\left( {{\rm{x}} - {\rm{a}}} \right)\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0\frac{{\sin \left( {{\rm{x}} - {\rm{a}}} \right)}}{{{\rm{x}} - {\rm{a}}}}} \right\}\left\{ {{\rm{\: x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}{\rm{a}}\frac{1}{{{\rm{x}} + {\rm{a}}}}} \right\}$

 = 1. $\frac{1}{{{\rm{a}}.{\rm{a}}}}$ = $\frac{1}{{2{\rm{a}}}}$.

 

7) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{{{\rm{x}}^2} - {{\rm{p}}^2}}}{{{\rm{tan}}\left( {{\rm{x}} - {\rm{p}}} \right)}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{{{\rm{x}}^2} - {{\rm{p}}^2}}}{{{\rm{tan}}\left( {{\rm{x}} - {\rm{p}}} \right)}}$

When x = p, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{{{\rm{x}}^2} - {{\rm{p}}^2}}}{{{\rm{tan}}\left( {{\rm{x}} - {\rm{p}}} \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{{{\rm{x}}^2} - {{\rm{p}}^2}}}{{\frac{{\sin \left( {{\rm{x}} - {\rm{p}}} \right)}}{{\cos \left( {{\rm{x}} - {\rm{p}}} \right)}}}}{\rm{\: }}$= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{\left( {{\rm{x}} + {\rm{p}}} \right)\left( {{\rm{x}} - {\rm{p}}} \right).{\rm{cos}}\left( {{\rm{x}} - {\rm{p}}} \right)}}{{{\rm{sin}}\left( {{\rm{x}} - {\rm{p}}} \right)}}$

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\frac{{{\rm{x}} - {\rm{p}}}}{{\sin \left( {{\rm{x}} - {\rm{p}}} \right)}}.\left( {{\rm{x}} + {\rm{p}}} \right).{\rm{cos}}\left( {{\rm{x}} - {\rm{p}}} \right)$

= (x – p) $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{1}{{\frac{{\left( {\sin \left( {{\rm{x}} - {\rm{p}}} \right)} \right)}}{{{\rm{x}} - {\rm{p}}}}}}$. x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$p $\left( {{\rm{x}} + {\rm{p}}} \right).{\rm{cos}}\left( {{\rm{x}} - {\rm{p}}} \right)$= 1.(p + p).1 = 2p.

 

8) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}.{\rm{cosbx}}}}{{{\rm{sincx}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}.{\rm{cosbx}}}}{{{\rm{sincx}}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}}.{\rm{cosbx}}}}{{{\rm{sincx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\frac{{{\rm{sinax}}}}{{{\rm{ax}}}}.{\rm{a}}.{\rm{acosbx}}}}{{\frac{{{\rm{sincx}}}}{{{\rm{cx}}}}.{\rm{c}}}}$ = $\frac{{1.{\rm{a}}.1}}{{1.{\rm{c}}}}$ = $\frac{{\rm{a}}}{{\rm{c}}}$.

 

9) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cosbx}}}}{{{{\rm{x}}^2}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cosbx}}}}{{{{\rm{x}}^2}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cosbx}}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{2{{\sin }^2}\frac{{\rm{x}}}{2}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0$\left[ {2.{{\left( {\frac{{\sin \frac{{\rm{x}}}{2}}}{{\frac{{\rm{x}}}{2}}}} \right)}^2}.\frac{1}{4}} \right]$.

= $\frac{1}{2}{\left( 1 \right)^2}$ = $\frac{1}{2}$.

 

10) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}6{\rm{x}}}}{{{{\rm{x}}^2}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}6{\rm{x}}}}{{{{\rm{x}}^2}}}$

When x = 0 , the given function takes the form $\frac{0}{0}$.

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}6{\rm{x}}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{2{{\sin }^2}3{\rm{x}}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0$\left[ {2.{{\left( {\frac{{\sin 3{\rm{x}}}}{{3{\rm{x}}}}} \right)}^2}.9} \right]$ = 18.

 

11) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}9{\rm{x}}}}{{{{\rm{x}}^2}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}9{\rm{x}}}}{{{{\rm{x}}^2}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cos}}9{\rm{x}}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{2{{\sin }^2}\frac{{9{\rm{x}}}}{2}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{2{{\left( {\sin \frac{{9{\rm{x}}}}{2}} \right)}^2}}}{{{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\left[ {2{{\left( {\frac{{\sin \frac{{9{\rm{x}}}}{2}}}{{\frac{{9{\rm{x}}}}{2}}}} \right)}^2}\left( {\frac{{81}}{4}} \right)} \right]$ = $\frac{{81}}{2}$.

 

12) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{cosax}} - {\rm{cosbx}}}}{{{{\rm{x}}^2}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{cosax}} - {\rm{cosbx}}}}{{{{\rm{x}}^2}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= $\frac{{2\sin \frac{{{\rm{ax}} + {\rm{bx}}}}{2}.\sin \frac{{{\rm{bx}} - {\rm{ax}}}}{2}}}{{{{\rm{x}}^2}}}$ = $\frac{{\frac{{2\sin \left( {{\rm{a}} + {\rm{b}}} \right){\rm{x}}}}{2}}}{{\rm{x}}}.\frac{{\frac{{\sin \left( {{\rm{b}} - {\rm{a}}} \right){\rm{x}}}}{2}}}{{\rm{x}}}$

= $\frac{{2\sin \frac{{\left( {{\rm{a}} + {\rm{b}}} \right){\rm{x}}}}{2}}}{{\left( {\frac{{{\rm{a}} + {\rm{b}}}}{2}} \right){\rm{x}}.\frac{2}{{{\rm{a}} + {\rm{b}}}}}}{\rm{\: }}.\frac{{\sin \frac{{\left( {{\rm{b}} - {\rm{a}}} \right){\rm{x}}}}{2}}}{{\left( {\frac{{{\rm{b}} - {\rm{a}}}}{2}} \right){\rm{x}}.\frac{2}{{{\rm{b}} - {\rm{a}}}}}}$ = $2.\frac{{{\rm{a}} + {\rm{b}}}}{2}.\frac{{{\rm{b}} - {\rm{a}}}}{2}$ = $\frac{{{{\rm{b}}^2} - {{\rm{a}}^2}}}{2}$.

 

13) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}} - {\rm{sinbx}}}}{{\rm{x}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sinax}} - {\rm{sinbx}}}}{{\rm{x}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\left( {\frac{{{\rm{sinax}}}}{{\rm{x}}} - \frac{{{\rm{sinbx}}}}{{\rm{x}}}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\left( {\frac{{{\rm{sinax}}}}{{{\rm{ax}}}}{\rm{\: \: }}.{\rm{a}} - \frac{{{\rm{sinbx}}}}{{{\rm{bx}}}}.{\rm{b}}} \right){\rm{\: }}$

= 1.a – 1.b = a – b.

 

14) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cospx}}}}{{1 - {\rm{cosqx}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{1 - {\rm{cospx}}}}{{1 - {\rm{cosqx}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{2{{\sin }^2}\frac{{{\rm{px}}}}{2}}}{{{{\sin }^2}\frac{{{\rm{qx}}}}{2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\left( {\frac{{{\rm{sinpx}}}}{2}} \right)}^2}}}{{{{\left( {\frac{{{\rm{sinqx}}}}{2}} \right)}^2}}}{\rm{\: }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\left[ {{{\left( {\frac{{\sin \frac{{{\rm{px}}}}{2}}}{{\frac{{{\rm{px}}}}{2}}}} \right)}^2}.\frac{{{{\rm{p}}^2}}}{4}.\frac{1}{{\left( {\frac{{\frac{{{\rm{sinqx}}}}{2}}}{{\frac{{{\rm{qx}}}}{2}}}} \right)\frac{{{{\rm{q}}^2}}}{4}{\rm{\: \: }}}}} \right]$ = $\frac{{{{\rm{p}}^2}}}{{{{\rm{q}}^2}}}$.

 

15) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanx}} - {\rm{sinx}}}}{{{{\rm{x}}^3}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{tanx}} - {\rm{sinx}}}}{{{{\rm{x}}^3}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}} - {\rm{sinx}}}}{{{{\rm{x}}^3}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sin}}2{\rm{x}} - {\rm{sin}}2{\rm{x}}.{\rm{cos}}2{\rm{x}}}}{{{{\rm{x}}^3}.{\rm{cos}}2{\rm{x}}}}{\rm{\: }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sin}}2{\rm{x}}\left( {1 - {\rm{cos}}2{\rm{x}}} \right)}}{{{{\rm{x}}^3}{\rm{cos}}2{\rm{x}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sin}}2{\rm{x}}.2{{\sin }^2}{\rm{x}}}}{{{{\rm{x}}^3}{\rm{cos}}2{\rm{x}}}}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sin}}2{\rm{x}}}}{{2{\rm{x}}}}$.2.2${\left( {\frac{{{\rm{sinx}}}}{{\rm{x}}}} \right)^2}$.$\frac{1}{{{\rm{cos}}2{\rm{x}}}}$ = 1.4.1 = 4.

 

17) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2  (secx – tanx)  

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2  (secx – tanx)  

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2  (secx – tanx)   [∞ – ∞ form]

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\left( {\frac{1}{{{\rm{cosx}}}} - \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\left( {\frac{{1 - {\rm{sinx}}}}{{\cos {\rm{x}}}}} \right)$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\frac{{1 - {\rm{sinx}}}}{{{\rm{cosx}}}}$ * $\frac{{1 + {\rm{sinx}}}}{{1 + {\rm{sinx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2  $\frac{{1 - {{\sin }^2}{\rm{x}}}}{{2{\rm{cosx}}\left( {1 + {\rm{sinx}}} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\frac{{{\rm{cosx}}}}{{1 + {\rm{sinx}}}}$ = $\frac{{\cos \frac{{\rm{\pi }}}{2}}}{{1 + \sin \frac{{\rm{\pi }}}{2}}}$ = 0.

 

18) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{\rm{se}}{{\rm{x}}^2}{\rm{x}} - 2{\rm{\: }}}}{{{\rm{tanx}} - 1}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:
x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{\rm{se}}{{\rm{x}}^2}{\rm{x}} - 2{\rm{\: }}}}{{{\rm{tanx}} - 1}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

=  x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{\rm{se}}{{\rm{x}}^2}{\rm{x}} - 2{\rm{\: }}}}{{{\rm{tanx}} - 1}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{1 + {{\tan }^2}{\rm{x}} - 2}}{{{\rm{tanx}} - 1}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{{\tan }^2}{\rm{x}} - 1}}{{{\rm{tanx}} - 1}}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{\left( {{\rm{tanx}} + 1} \right)\left( {{\rm{tanx}} - 1} \right)}}{{{\rm{tanx}} - 1}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 (tanx + 1)

= tan $\frac{{\rm{\pi }}}{4}$ + 1 = 1 + 1 = 2.

 

19) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 = $\frac{{2 - {\rm{cose}}{{\rm{c}}^2}{\rm{x}}}}{{1 - {\rm{cotx}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 = $\frac{{2 - {\rm{cose}}{{\rm{c}}^2}{\rm{x}}}}{{1 - {\rm{cotx}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 = $\frac{{2 - {\rm{cose}}{{\rm{c}}^2}{\rm{x}}}}{{1 - {\rm{cotx}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{2 - 1 - {{\cot }^2}{\rm{x}}}}{{1 - {\rm{cotx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{1 - {{\cot }^2}{\rm{x}}}}{{1 - {\rm{cotx}}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{\left( {1 + {\rm{cotx}}} \right)\left( {1 - {\rm{cotx}}} \right)}}{{1 - {\rm{cotx}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 (1 + cotx)

= 1 + cot$\frac{{\rm{\pi }}}{4}$ = 1 + 1 = 2.

 

20) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{tanx}} - {\rm{tany}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{tanx}} - {\rm{tany}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{tanx}} - {\rm{tany}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\left( {\frac{{\frac{{{\rm{sinx}}}}{{{\rm{cosx}}}} - \frac{{{\rm{siny}}}}{{{\rm{cosy}}}}}}{{{\rm{x}} - {\rm{y}}}}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{sinx}}.{\rm{cosy}} - {\rm{cosx}}.{\rm{siny}}}}{{{\rm{cosx}}.{\rm{cosy}}\left( {{\rm{x}} - {\rm{y}}} \right)}}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{\sin \left( {{\rm{x}} - {\rm{y}}} \right)}}{{{\rm{cosx}}.{\rm{cosy}}\left( {{\rm{x}} - {\rm{y}}} \right)}}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{\sin \left( {{\rm{x}} - {\rm{y}}} \right)}}{{{\rm{x}} - {\rm{y}}}}$. x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{1}{{{\rm{cosx}}.{\rm{cosy}}}}$

= 1.$\frac{1}{{{\rm{cosy}}.{\rm{cosy}}}}$ = sec2y.

 

21) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{sinx}} - {\rm{siny}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{sinx}} - {\rm{siny}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{2\cos \frac{{{\rm{x}} + {\rm{y}}}}{2}.\sin \frac{{{\rm{x}} - {\rm{y}}}}{2}}}{{{\rm{x}} - {\rm{y}}}}$

= 2 x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y cos $\frac{{{\rm{x}} + {\rm{y}}}}{2}$. x – y $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\sin \frac{{{\rm{x}} - {\rm{y}}}}{2}}}{{\frac{{{\rm{x}} - {\rm{y}}}}{2}.2{\rm{\: }}}}$ = 2.cos$\frac{{2{\rm{y}}}}{2}.\frac{1}{2}$ = cosy.

 

22) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{cosx}} - {\rm{cosy}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:
x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{cosx}} - {\rm{cosy}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{{\rm{cosx}} - {\rm{cosy}}}}{{{\rm{x}} - {\rm{y}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{2\sin \frac{{{\rm{x}} + {\rm{y}}}}{2}.\sin \frac{{{\rm{y}} - {\rm{x}}}}{2}}}{{{\rm{x}} - {\rm{y}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y $\frac{{ - 2\sin \frac{{{\rm{x}} + {\rm{y}}}}{2}.\sin \frac{{{\rm{x}} - {\rm{y}}}}{2}}}{{{\rm{x}} - {\rm{y}}}}$

= –2 x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$y sin $\frac{{{\rm{x}} + {\rm{y}}}}{2}$. (x – y) $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\sin \frac{{{\rm{x}} - {\rm{y}}}}{2}}}{{\frac{{{\rm{x}} - {\rm{y}}}}{2}.2}}$

= –2sin $\frac{{2{\rm{y}}}}{2}.\frac{1}{2}$ = –siny.

 

23) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcot}}\theta  - \theta {\rm{cotx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:
x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcot}}\theta  - \theta {\rm{cotx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcot}}\theta  - \theta {\rm{cotx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcot}}\theta  - \theta {\rm{cot}}\theta  + \theta {\rm{cot}}\theta  - \theta {\rm{cotx}}}}{{{\rm{x}} - \theta }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{\left( {{\rm{x}} - \theta } \right){\rm{cot}}\theta  + \theta \left( {{\rm{cot}}\theta  - {\rm{cotx}}} \right)}}{{{\rm{x}} - \theta }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $[\left( {{\rm{cot}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}\left\{ {\frac{{{\rm{cos}}\theta }}{{{\rm{sin}}\theta }} - \frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}} \right\}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{cot}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}.\frac{{{\rm{sinxcos}}\theta  - {\rm{cosx}}.{\rm{sin}}\theta }}{{{\rm{sin}}\theta .{\rm{sinx}}}}} \right]$

= cotθ + x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{\theta }{{\left( {{\rm{x}} - \theta } \right)}}$.$\frac{{\sin \left( {{\rm{x}} - \theta } \right)}}{{{\rm{sin}}\theta .{\rm{sinx}}}}{\rm{\: \: }}$

= cotθ + x – θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{sin}}\left( {{\rm{x}} - \theta } \right)}}{{{\rm{x}} - \theta }}$. x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{\theta }{{{\rm{sin}}\theta .{\rm{sinx}}}}$.

= cotθ + 1.$\frac{\theta }{{{\rm{sin}}\theta .{\rm{sin}}\theta }}$ = cotθ + $\frac{\theta }{{{{\sin }^2}\theta }}$.

 

24) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcos}}\theta  - \theta {\rm{cosx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcos}}\theta  - \theta {\rm{cosx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcos}}\theta  - \theta {\rm{cosx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xcos}}\theta  - \theta {\rm{cos}}\theta  + \theta {\rm{cos}}\theta  - \theta {\rm{cosx}}}}{{{\rm{x}} - \theta }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{\left( {{\rm{x}} - \theta } \right){\rm{cos}}\theta  + \theta \left( {{\rm{cos}}\theta  - {\rm{cosx}}} \right)}}{{{\rm{x}} - \theta }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{cos}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}.2\sin \frac{{\theta  + {\rm{x}}}}{2}.\sin \frac{{{\rm{x}} - \theta }}{2}} \right]$

= cosθ + x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ 2θsin $\frac{{\theta  + {\rm{x}}}}{2}$x – θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\sin \frac{{{\rm{x}} - \theta }}{2}}}{{\frac{{{\rm{x}} - \theta }}{2}.2}}$

= cosθ + 2θ.sin $\frac{{2\theta }}{2}$.1.$\frac{1}{2}$ = cosθ + θ.sinθ.

 

25) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{1 + {\rm{cos\pi x}}}}{{{{\tan }^2}{\rm{\pi x}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{1 + {\rm{cos\pi x}}}}{{{{\tan }^2}{\rm{\pi x}}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{1 + {\rm{cos\pi x}}}}{{{{\tan }^2}{\rm{\pi x}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\left( {1 + {\rm{cos\pi x}}} \right){{\cos }^2}{\rm{\pi x}}}}{{\left( {1 + {\rm{cos\pi x}}} \right)\left( {1 - {\rm{cos\pi x}}} \right)}}$

= $\frac{{{{\cos }^2}{\rm{\pi }}}}{{1 - {\rm{cos\pi }}}}$

= $\frac{{{{\left( { - 1} \right)}^2}}}{{1 - \left( { - 1} \right)}}$ = $\frac{1}{2}$.

 

26) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xtan}}\theta  - \theta {\rm{tanx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xtan}}\theta  - \theta {\rm{tanx}}}}{{{\rm{x}} - \theta }}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{{\rm{xtan\: }}\theta  - \theta {\rm{tan}}\theta  + \theta {\rm{tan}}\theta  - \theta {\rm{tanx}}}}{{{\rm{x}} - \theta }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{{\left( {{\rm{x}} - \theta } \right){\rm{tan}}\theta  + \theta \left( {{\rm{tan}}\theta  - {\rm{tanx}}} \right)}}{{{\rm{x}} - \theta }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{tan}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}\left\{ {{\rm{tan}}\theta  - {\rm{tanx}}} \right\}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{tan}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}\left\{ {\frac{{{\rm{sin}}\theta }}{{{\rm{cos}}\theta }} - \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}} \right\}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{tan}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}\left\{ {\frac{{{\rm{sin}}\theta .{\rm{cosx}} - {\rm{cos}}\theta .{\rm{sinx}}}}{{{\rm{cos}}\theta .{\rm{cosx}}}}} \right\}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\left[ {{\rm{tan}}\theta  + \frac{\theta }{{{\rm{x}} - \theta }}.\frac{{\sin \left( {\theta  - {\rm{x}}} \right)}}{{{\rm{cos}}\theta .{\rm{cosx}}}}} \right]$

= tanθ – x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$θ $\frac{\theta }{{{\rm{cos}}\theta .{\rm{cosx}}}}$x – θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\sin \left( {{\rm{x}} - \theta } \right)}}{{{\rm{x}} - \theta }}$

= tanθ –$\frac{\theta }{{{\rm{cos}}\theta .{\rm{cos}}\theta }}$.1 = tanθ – θsec2θ.

 

27) θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{\rm{cos}}\theta  - {\rm{sin}}\theta }}{{\theta  - \frac{{\rm{\pi }}}{4}}}$$\left[ {\frac{0}{{0{\rm{form}}}}} \right]$

Solution:

= θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{{\rm{cos}}\theta  - {\rm{sin}}\theta }}{{\theta  - \frac{{\rm{\pi }}}{4}}}$$\left[ {\frac{0}{{0{\rm{form}}}}} \right]$

= θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{\sqrt 2 \left( {\frac{1}{{\sqrt 2 }}{\rm{cos}}\theta  - \frac{1}{{\sqrt 2 }}{\rm{sin}}\theta } \right)}}{{\theta  - \frac{{\rm{\pi }}}{4}}}$

= θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{\sqrt 2 \left( {\sin \frac{{\rm{\pi }}}{4}{\rm{cos}}\theta  - \cos \frac{{\rm{\pi }}}{4}.{\rm{sin}}\theta } \right)}}{{\theta  - \frac{{\rm{\pi }}}{4}}}$

= θ $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/4 $\frac{{\sqrt 2 \sin \left( {\frac{{\rm{\pi }}}{4} - \theta } \right)}}{{\theta  - \frac{{\rm{\pi }}}{4}}}$

= θ $--\frac{{\rm{\pi }}}{4}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{ - \sqrt 2 \left( {\theta  - \frac{{\rm{\pi }}}{4}} \right)}}{{\theta  - \frac{{\rm{\pi }}}{4}}}$

= $ - \sqrt 2 $.1 = $ - \sqrt 2 $.

 

28) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{{\sqrt {\rm{x}}  - \sqrt {\rm{c}} }}{{{\rm{sinx}} - {\rm{sinc}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{{\sqrt {\rm{x}}  - \sqrt {\rm{c}} }}{{{\rm{sinx}} - {\rm{sinc}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{{\sqrt {\rm{x}}  - \sqrt {\rm{c}} }}{{{\rm{sinx}} - {\rm{sinc}}}}$$\left[ {\frac{0}{0}{\rm{form}}} \right]$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{{\sqrt {\rm{x}}  - \sqrt {\rm{c}} }}{{2\sin \frac{{{\rm{x}} - {\rm{c}}}}{2}.\cos \frac{{{\rm{x}} + {\rm{c}}}}{2}}}$ * $\frac{{\sqrt {\rm{x}}  + \sqrt {\rm{c}} }}{{\sqrt {\rm{x}}  + \sqrt {\rm{c}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{{{\rm{x}} - {\rm{c}}}}{{2\sin \frac{{{\rm{x}} - {\rm{c}}}}{2}.\cos \frac{{{\rm{x}} + {\rm{c}}}}{2}\left( {\sqrt {\rm{x}}  + \sqrt {\rm{c}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{2}{{2\left( {\sqrt {\rm{x}}  + \sqrt {\rm{c}} } \right).\sin \frac{{\frac{{\frac{{{\rm{x}} - {\rm{c}}}}{2}}}{{{\rm{x}} - {\rm{c}}}}}}{2}.\cos \frac{{{\rm{x}} + {\rm{c}}}}{2}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$c $\frac{1}{{\left( {\sqrt {\rm{x}}  + \sqrt {\rm{x}} } \right)\cos \frac{{{\rm{x}} + {\rm{c}}}}{2}}}$ = $\frac{1}{{\left( {\sqrt {\rm{c}}  + \sqrt {\rm{c}} } \right).\cos \frac{{{\rm{c}} + {\rm{c}}}}{2}}}$ = $\frac{1}{{2\sqrt {\rm{c}} .{\rm{cosc}}}}$.

= secc. $\frac{1}{{2\sqrt {\rm{c}} }}$ = $\frac{{{\rm{secc}}}}{{2\sqrt {\rm{c}} }}{\rm{\: }}$.

 

29) Find the limit of:

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{6{\rm{x}}}} - 1}}{{\rm{x}}}$$\left( {\frac{0}{0}} \right$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{6{\rm{x}}}} - 1}}{{\rm{x}}}$$\left( {\frac{0}{0}} \right$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{6{\rm{x}}}} - 1}}{{\rm{x}}}$$\left( {\frac{0}{0}} \right)$ = $\left( {{\rm{\: x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{6{\rm{x}}}} - 1}}{{\rm{x}}}} \right)$.6 = 1.6 = 6.

 

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{2{\rm{x}}}} - 1}}{{{\rm{x}}{{.2}^{{\rm{x}} + 1}}}},$$\left( {\frac{0}{0}} \right)$

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{2{\rm{x}}}} - 1}}{{{\rm{x}}{{.2}^{{\rm{x}} + 1}}}},$$\left( {\frac{0}{0}} \right)$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{2{\rm{x}}}} - 1}}{{{\rm{x}}{{.2}^{{\rm{x}} + 1}}}},$$\left( {\frac{0}{0}} \right)$ = $\left( {{\rm{\: x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{2{\rm{x}}}} - 1}}{{2{\rm{x}}}}.\frac{2}{{{2^{{\rm{x}} + 1}}}}} \right)$ = 1.$\frac{2}{2}$ = 1.

 

c) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{ax}}}} - {{\rm{e}}^{{\rm{bx}}}}}}{{\rm{x}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{ax}}}} - {{\rm{e}}^{{\rm{bx}}}}}}{{\rm{x}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{ax}}}} - {{\rm{e}}^{{\rm{bx}}}}}}{{\rm{x}}}$ $,\left( {\frac{0}{0}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{ax}}}} - 1 - \left( {{{\rm{e}}^{{\rm{bx}}}} - 1} \right)}}{{\rm{x}}}$  = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{ax}}}} - 1}}{{\rm{x}}}$ – x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{e}}^{{\rm{bx}}}} - 1}}{{\rm{x}}}$ = $\left( {{\rm{x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{{\rm{ax}}}} - 1}}{{{\rm{ax}}}}} \right).{\rm{a}} - \left( {{\rm{x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{{\rm{bx}}}} - 1}}{{{\rm{bx}}}}} \right).{\rm{b}}$ = 1.a – 1.b = a – b.

 

d) $\mathop {\lim }\limits_{x \to 0} {\rm{ }}\frac{{{a^x} + {b^x} - 2}}{x}$

Solution:

$\mathop {\lim }\limits_{x \to 0} {\rm{ }}\frac{{{a^x} + {b^x} - 2}}{x}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{a}}^{\rm{x}}} + {{\rm{b}}^{\rm{x}}} - 2}}{{\rm{x}}}$$,\left( {\frac{0}{0}} \right)$ = = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{{\rm{a}}^{\rm{x}}} - 1}}{{\rm{x}}}$$ + {\rm{\: }} = {\rm{\: x\: }}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{b}}^{\rm{x}}} - 1}}{{\rm{x}}}{\rm{\: }}$= loga + logb = log(ab).

 

30) Evaluate the limit: 

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - 2}}{{{\rm{log}}\left( {{\rm{x}} - 1} \right)}}$

Solutio:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - 2}}{{{\rm{log}}\left( {{\rm{x}} - 1} \right)}}$

let x – 2 = y → x = y + 2.

So, x → 2 y → 0.

Now, = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{x}} - 2}}{{{\rm{log}}\left( {{\rm{x}} - 1} \right)}}$ = y$\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\rm{y}}}{{{\rm{log}}\left( {{\rm{y}} + 1} \right)}}$ = $\frac{1}{{{\rm{y}}\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}0{\rm{\: }}\frac{{\log \left( {{\rm{y}} + 1} \right)}}{{\rm{y}}}{\rm{\: }}}}$ = $\frac{1}{1}$ = 1.

 

b) $ \mathop {\lim }\limits_{x \to \frac{\pi }{2}} {\rm{ }}\frac{{\cos x}}{{\log (x - \frac{\pi }{2} + 1)}}$

Solution:

$ \mathop {\lim }\limits_{x \to \frac{\pi }{2}} {\rm{ }}\frac{{\cos x}}{{\log (x - \frac{\pi }{2} + 1)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\frac{{{\rm{cosx}}}}{{\log \left( {{\rm{x}} - \frac{{\rm{\pi }}}{2} + 1} \right)}}$, $\left( {\frac{0}{0}} \right)$

Let x – π/2 = y → y x = $\frac{{\rm{\pi }}}{2}$ + y

So, x →$\frac{{\rm{\pi }}}{2}$ y → 0

Now,

=x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$π/2 $\frac{{{\rm{cosx}}}}{{\log \left( {{\rm{x}} - \frac{{\rm{\pi }}}{2} + 1} \right)}}$

= y $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{\cos \left( {\frac{{\rm{\pi }}}{2} + {\rm{y}}} \right)}}{{\log \left( {{\rm{y}} + 1} \right)}}$ = y $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $--\frac{{{\rm{siny}}}}{{\log \left( {{\rm{y}} + 1} \right)}}$.

= –y $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\left( {\frac{{\frac{{\frac{{{\rm{siny}}}}{{\rm{y}}}}}{{\log \left( {{\rm{y}} + 1} \right)}}}}{{\rm{y}}}} \right)$ = $ - \frac{1}{1}$ = –1.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.