Solution:
Let P(n) ≡ 1.3 + 3.5 + 5.7 + ..... to n terms = $\frac{{n(4{n^2}
+ 6n - 1)}}{3}$, for all n ∈ N
But the first factor in each term
i.e., 1, 3, 5 … are in A.P. with a = 1 and d = 2.
∴ nth term = a + (n –1)d = 1 +(n – 1)2 =
(2n – 1)
Also second factor in each term
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1)2
= (2n+1)
∴ nth term, tn = (2n –
1) (2n + 1)
∴ P(n) ≡ 1.3 + 3.5
+ 5.7 + .... + (2n – 1) (2n + 1) =$\frac{{n(4{n^2} +
6n - 1)}}{3}$
Step I:
Put n = 1
L.H.S. = 1.3 = 3
R.H.S. =$\frac{{1(4{{(1)}^2} + 6(1) - 1)}}{3} = 3$=L.H.S.
∴ P(n) is true for n = 1.
Step II:
Let us consider that P(n) is true for n = k
∴ 1.3 + 3.5 + 5.7 + ..... + (2k –
1)(2k + 1)
=$\frac{{k(4{k^2} + 6k - 1)}}{3}$....(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
1.3 + 3.5 + 5.7 + …. + [2(k + 1) – 1][2(k + 1) + 1]
$\begin{array}{l} = \frac{{(k + 1)[4{{(k + 1)}^2} + 6(k + 1)
- 1]}}{3}\\ = \frac{{(k + 1)[4{k^2} + 8k + 4 + 6k + 6 - 1]}}{3}\\ = \frac{{(k +
1)}}{3}(4{k^2} + 14k + 9)\end{array}$
L.H.S. = 1.3 + 3.5 + 5.7 + ... + [2(k + 1) – 1][2(k + 1) +
1]
= 1.3 + 3.5 + 5.7 + ... + (2k – 1)(2k + 1) + (2k + 1)(2k +
3)
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical
induction, P(n) is true for all n ∈ N.
∴ 1.3 + 3.5 + 5.7 + ..... to n terms =$\frac{{n(4{n^2} + 6n - 1)}}{3}$ for all n ∈ N.