Exercise 8.1
1. Evaluate the following without using the table:
Solution:
a. Sin-1 1 = $\frac{{\rm{\pi }}}{2}$
b. Sin-1 = $\left( { - \frac{1}{2}} \right)$
= –sin-1$\left( {\frac{1}{2}} \right)$ = $ - \frac{{\rm{\pi }}}{6}$
c. Cos-1$\left( { - \frac{{\sqrt 3 }}{1}}
\right)$= π – cos-1$\left( {\frac{{\sqrt 3 }}{2}} \right)$= π –
$\frac{{\rm{\pi }}}{6}$ = $\frac{{5{\rm{\pi }}}}{6}.$
d. Tan-1(1) = $\frac{{\rm{\pi }}}{4}$
e. Arc cot(-1) = cos-1(-1) = $\frac{{3{\rm{\pi
}}}}{4}$
f. Arc tan$\left( { - \frac{1}{{\sqrt 3 }}} \right)$ = tan-1$\left(
{ - \frac{1}{{\sqrt 3 }}} \right)$ = -tan-1$\left( {\frac{1}{{\sqrt
3 }}} \right)$ = $ - \frac{{\rm{\pi }}}{6}$.
2. Express each of the following in terms of x:
Solution:
a. Cos tan-1x
Let tan-1x = θ
[ tan θ = x.]
Now, costan-1x = cosθ = $\frac{1}{{\sqrt {1 +
{{\rm{x}}^2}} }}$ [x = tanθ]
b. sin tan-1x
Let, cot-1x =
θ
[cotθ = x]
Now, sin.cot-1x = sinθ = $\frac{1}{{\sqrt {1 +
{{\rm{x}}^2}} }}$ [cotθ = x]
c. Tan(Arc cotx) = tancot-1x = tantan-1$\frac{1}{{\rm{x}}}$
= $\frac{1}{{\rm{x}}}$.
d. Cos.sin-1x = cos.cos-1x
$\sqrt {1 - {{\rm{x}}^2}} $ = $\sqrt {1 - {{\rm{x}}^2}} $
e. Tan(2tan-1x) = tantan-1$\left(
{\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}} \right)$ = $\frac{{2{\rm{x}}}}{{1 -
{{\rm{x}}^2}}}$
f. Sin(2tan-1x) = sin.sin-1$\left(
{\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}} \right)$ = $\frac{{2{\rm{x}}}}{{1 +
{{\rm{x}}^2}}}$
g. Cos(2cot-1x)
Let, cos(2cot-1x) = cos2θ = $\frac{{{{\cot
}^2}\theta - 1}}{{{{\cot }^2}\theta + 1}}$ = $\frac{{{{\rm{x}}^2} -
1}}{{{{\rm{x}}^2} + 1}}$
h. Cot(2 Arc cotx) = cot(2cot-1x) = cot
cot-1$\left( {\frac{{{{\rm{x}}^2} - 1}}{{2{\rm{x}}}}} \right)$ =
$\frac{{{{\rm{x}}^2} - 1}}{{2{\rm{x}}}}$.
3. Evaluate each of the following using the table if
necessary:
a. Sin.cos-1$\left( {\frac{3}{5}} \right)$
= sin.sin-1$\sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} $ =
sin.sin-1$\frac{4}{5}$ = $\frac{4}{5}$.
b. cos$\left( {{\rm{Arc}}\cos \frac{2}{3}} \right)$ =
cos.cos-1$\frac{2}{3}$ = $\frac{2}{3}$
c. Arc tan $\left( {\tan \frac{{\rm{\pi }}}{6}{\rm{\: }}}
\right)$ = tan-1.tan $\frac{{\rm{\pi }}}{6}$ = $\frac{{\rm{\pi
}}}{6}.$
d. Sin $\left( {{{\tan }^{ - 1}}\frac{3}{4}} \right)$
= sin.sin-1$\frac{3}{5}$ = $\frac{3}{5}$.
e. sin$\left( {2{{\cos }^{ - 1}}\frac{1}{2}} \right)$
Let cos-1 $\frac{1}{2}$= θ
So, cosθ = $\frac{1}{2}$.
Now, sin$\left( {2{{\cos }^{ - 1}}\frac{1}{2}} \right)$=
sin2θ = 2sinθ.cosθ.
= 2. $\frac{1}{2}$
= 1
f. Sin-1$\left( {2\cos \frac{{\rm{\pi }}}{3}}
\right)$ = sin-1$\left( {\frac{{2.1}}{2}} \right)$ = sin-1(1)
= $\frac{{\rm{\pi }}}{2}$.
4.Prove each of the following:
a. 2cos-1x = cos-1(2x2 –
1)
Solution:
Let, cos-1x = θ.
So, cosθ = x
Now, cos2θ = 2cos2θ – 1
Or, cos2θ = 2x2 – 1 [cosθ = x]
Or, 2θ = cos-1(2x2 – 1)
So, 2cos-1x = cos-1(2x2 –
1).
b. 3cos-1x = cos-1(4x3 –
3x)
Solution:
Let, cos-1x = θ.
So, cosθ = x
Now, cos3θ = 4cos3θ – 3cosθ
Or, cos3θ = 4x3 – 3x [cosθ = x]
Or, 3θ = cos-1(4x3 – 3x)
So, 3cos-1x = cos-1(4x3 –
3x).
c. 3tan-1x = tan-1$\frac{{3{\rm{x}}
- {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$
Solution:
Let tan-1x = θ
So, tanθ = x
Now, tan3θ = $\frac{{3\tan \theta - {{\tan }^3}\theta
}}{{1 - 3{{\tan }^2}\theta }}$
Or, tan3θ = $\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 -
3{{\rm{x}}^2}}}$
Or, 3θ = tan-1$\frac{{3{\rm{x}} -
{{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$
So, 3tan-1x = tan-1$\frac{{3{\rm{x}} -
{{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$.
d. sin(Arc.cost)= cos(Arc.sint)
Solution:
L.H.S. = sin(Arc.cost) = sin(cos-1) = sin.sin-1$\sqrt
{1 - {{\rm{t}}^2}} $ = $\sqrt {1 - {{\rm{t}}^2}} $.
R.H.S = cos(Arc.sint) = cos.sin-1t = cos.cos-1$\sqrt
{1 - {{\rm{t}}^2}} $ = $\sqrt {1 - {{\rm{t}}^2}} $.
So, L.H.S. = R.H.S.
e. Cos(2 Arc.cost) =2t2 – 1
Solution:
Cos(2 Arc.cost) = cos(2cos-1t) = cos.cos-1(2t2 –
1)
So, cos(2 Arc.cost) = 2t2 – 1
f. sin(2sin-1x) = 2x.$\sqrt {1 - {{\rm{x}}^2}}
$
Solution:
Let, sin-1x = θ.
So. sinθ = x.
Now, sin(2sin-1x) = sin2θ = 2sinθ.cosθ
So, sin(2sin-1x) = 2x.$\sqrt {1 - {{\rm{x}}^2}}
$ [sinθ = x]
g. cos(sin-1u + cos-1v) = v$\sqrt
{1 - {{\rm{u}}^2}} $ – u$\sqrt {1 - {{\rm{v}}^2}} $
Solution:
Let, sin-1u = A → sinA = u and cosA = $\sqrt {1 -
{{\rm{u}}^2}} $
And cos-1v = b → cosB = v and sinB = $\sqrt {1 -
{{\rm{v}}^2}} $
We have,
Cos(A + B) = cosA.cosB – sinA.sinB
So, cos(sin-1u + cos-1v) = v$\sqrt {1
- {{\rm{u}}^2}} $ – u$\sqrt {1 - {{\rm{v}}^2}} $
h. tan-1$\frac{1}{5}{\rm{\: }}$+ tan-1$\frac{1}{7}{\rm{\:
}}$= tan-1$\left( {\frac{6}{{17}}} \right)$
Solution:
L.H.S. = tan-1$\frac{1}{5}$ + tan-1$\frac{1}{7}$
= tan-1$\left( {\frac{1}{5}} \right)$ + tan-1$\left(
{\frac{1}{7}} \right)$ = tan-1$\frac{{\frac{1}{5} + \frac{1}{7}}}{{1
- \frac{1}{5}.\frac{1}{7}}}$
= tan-1$\left( {\frac{{7 + 5}}{{35 - 1}}}
\right)$ = tan-1$\left( {\frac{{12}}{{34}}} \right)$
So, tan-1$\frac{1}{5}{\rm{\: }}$+ tan-1$\frac{1}{7}{\rm{\:
}}$= tan-1$\left( {\frac{6}{{17}}} \right)$
(i) tan-1 a– tan-1c= tan-1$\frac{{{\rm{a}}
- {\rm{b}}}}{{1 + {\rm{ab}}}}$ + tan-1$\frac{{{\rm{b}} -
{\rm{c}}}}{{1 + {\rm{bc}}}}$
Solution:
Here, R.H.S. = tan-1$\frac{{{\rm{a}} -
{\rm{b}}}}{{1 + {\rm{ab}}}}$ + tan-1$\frac{{{\rm{b}} - {\rm{c}}}}{{1
+ {\rm{bc}}}}$
= tan-1a – tan-1b + tan-1b –
tan-1c = tan-1 a– tan-1c = L.H.S.
(j) tan(Arc.tanu – Arc.tanv) = $\frac{{{\rm{u}} -
{\rm{v}}}}{{1 + {\rm{uv}}}}$
Solution:
L.H.S. = tan(Arc.tanu – Arc.tanv) = tan(tan-1u –
tan-1v)
= tan.tan-1$\frac{{{\rm{u}} - {\rm{v}}}}{{1 +
{\rm{uv}}}}$ = $\frac{{{\rm{u}} - {\rm{v}}}}{{1 + {\rm{uv}}}}$ = R.H.S.
(k) tan(2tan-1x) =2
tan (tan-1x + tan-1x3)
Solution:
(l) tan-1x + tan-1y + tan-1z
= tan-1$\frac{{{\rm{x}} + {\rm{y}} + {\rm{z}} - {\rm{xyz}}}}{{1 -
{\rm{xy}} - {\rm{zx}} - {\rm{yz}}}}$
Solution:
L.H.S. = tan-1x + tan-1y + tan-1z.
= tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1 -
{\rm{xy}}}}} \right)$ + tan-1z = tan-1$\frac{{\left(
{\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}} + {\rm{Z}}} \right)}}{{1 -
\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}.{\rm{z}}}}$
= tan-1$\frac{{{\rm{x}} + {\rm{y}} + {\rm{z}} -
{\rm{xyz}}}}{{1 - {\rm{xy}} - {\rm{zx}} - {\rm{yz}}}}$.
(m) sin-1$\frac{4}{5}$ + sin-1$\frac{5}{13}$
+ sin-1$\frac{16}{65}$= $\frac{{\rm{\pi }}}{2}$
Solution:
L.H.S. = sin-1$\left\{ {\frac{4}{5}\sqrt {1 -
{{\left( {\frac{5}{{13}}} \right)}^2}} + \frac{5}{{13}}\sqrt {1 -
{{\left( {\frac{4}{5}} \right)}^2}} } \right\}$ + sin-1$\frac{{16}}{{65}}$.
= sin-1$\left( {\frac{4}{5}.\frac{{12}}{{13}} +
\frac{5}{{13}}.\frac{3}{5}} \right)$ + sin-1$\frac{{16}}{{65}}$= sin-1$\left(
{\frac{{63}}{{65}}} \right){\rm{\: }}$ + sin-1$\frac{{16}}{{65}}.$
= sin-1$\left\{ {\frac{{63}}{{65}}\sqrt {1 -
{{\left( {\frac{{16}}{{65}}} \right)}^2}} + \frac{{16}}{{65}}\sqrt {1 -
{{\left( {\frac{{63}}{{65}}} \right)}^2}} } \right\}$
= sin-1$\left(
{\frac{{63}}{{65}}.\frac{{63}}{{65}} + \frac{{16}}{{65}}.\frac{{16}}{{65}}}
\right)$ = sin-1$\frac{{3969 + 256}}{{4225}}$.
= sin-1$\left( {\frac{{4225}}{{4225}}} \right)$ =
sin-11 = $\frac{{\rm{\pi }}}{2}$ = R.H.S.
(n) Prove that: tan-1$\sqrt {\rm{x}} $ =
$\frac{1}{2}$ cos-1$\frac{{1 - {\rm{x}}}}{{1 + {\rm{x}}}}$ =
$\frac{1}{2}$sin-1$\left( {\frac{{2\sqrt {\rm{x}} }}{{1 +
{\rm{x}}}}} \right)$
Solution:
Or, $\frac{1}{2}$cos-1$\frac{{1 - {\rm{x}}}}{{1 +
{\rm{x}}}}$ = $\frac{1}{2}$cos-1${\rm{\: }}\frac{{1 - {{\tan
}^2}\theta }}{{1 + {{\tan }^2}\theta }}$ [x
= tan2θ say]
= $\frac{1}{2}$cos-1 cos2θ =
$\frac{1}{2}$.2θ = θ = tan-1$\sqrt {\rm{x}} $.
And, $\frac{1}{2}$sin-1$\frac{{2\sqrt {\rm{x}}
}}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$ sin-1$\frac{{2{\rm{tan}}\theta
}}{{1 + {{\tan }^2}\theta }}$ [x = tan2θ
say]
= $\frac{1}{2}$ sin-1 sin2θ.
= $\frac{1}{2}$.2θ = θ tan-1$\sqrt {\rm{x}}
{\rm{\: }}$ [x = tan2θ say]
Hence, tan-1$\sqrt {\rm{x}} $ = $\frac{1}{2}$ cos-1$\frac{{1
- {\rm{x}}}}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$sin-1$\left(
{\frac{{2\sqrt {\rm{x}} }}{{1 + {\rm{x}}}}} \right)$.
5. Find the value of each of the following:
a. cos$\left( {{\rm{si}}{{\rm{n}}^{ - 1}}\frac{4}{5} +
{{\tan }^{ - 1}}\frac{5}{{12}}{\rm{\: }}} \right)$
Solution:
Let sin-1 = $\frac{4}{5}$ = A.
SO, sinA = $\frac{4}{5}$
And, cosA = $\frac{3}{5}$
And tan-1$\frac{5}{{12}}$ = B
So, tanB = $\frac{5}{{12}}$.
CosB = $\frac{{12}}{{13}}$, sinB = $\frac{5}{{13}}$.
Now, cos$\left( {{\rm{si}}{{\rm{n}}^{ - 1}}\frac{4}{5} +
{{\tan }^{ - 1}}\frac{5}{{12}}{\rm{\: }}} \right)$
= cos(A + B) = cosA.cosB – sinA.sinB
= $\frac{3}{5}$.$\frac{{12}}{{13}}$ –
$\frac{4}{5}$.$\frac{5}{{13}}$ = $\frac{{36 - 20}}{{65}}$ =
$\frac{{16}}{{65}}$.
b. sin$\left( {{{\cos }^1}\frac{1}{2} + {{\sin }^{ -
1}}\frac{3}{5}} \right)$
Solution:
Let, cos-1$\frac{1}{2}$ = A
So, cos A = $\frac{1}{2}$, sinA = $\frac{{\sqrt 3 }}{2}$
And sin-1$\frac{3}{5}$ = B
So, sinB = $\frac{3}{5}$, cosB = $\frac{4}{5}$.
Now, sin$\left( {{{\cos }^1}\frac{1}{2} + {{\sin }^{ -
1}}\frac{3}{5}} \right)$
= sin(A + B) = sinA.cosB + cosA.sinB
= $\frac{{\sqrt 3 }}{2}$.$\frac{4}{5}$ +
$\frac{1}{2}$.$\frac{3}{5}$ = $\frac{{4\sqrt 3 + 3}}{{10}}$.
c. tan$\left( {{{\cos }^{ - 1}}\frac{4}{5} - {{\sin }^{ -
1}}\frac{{12}}{{13}}} \right)$
Solution:
Let, cos-1$\frac{4}{5}$ = A
So, cos A = $\frac{4}{5}$
So, tanA = $\frac{3}{4}$
Or, sin-1$\frac{{12}}{{13}}$ = B
So, sinB = $\frac{{12}}{{13}}$
So, tanB = $\frac{{12}}{5}$.
Now, tan$\left( {{{\cos }^{ - 1}}\frac{4}{5} - {{\sin }^{ -
1}}\frac{{12}}{{13}}} \right)$ = tan(A – B)
= $\frac{{{\rm{tanA}} - {\rm{tanB}}}}{{1 +
{\rm{tanA}}.{\rm{tanB}}}}$ = $\frac{{\frac{3}{4} - \frac{{12}}{5}}}{{1 +
\frac{3}{4}.\frac{{12}}{5}}}$ = $\frac{{15 - 48}}{{20 + 36}}$ = $ -
\frac{{33}}{{56}}$.
d. tan(tan-1x – tan-12y)
Solution:
tan(tan-1x – tan-12y)
= tan-1$\left( {\frac{{{\rm{x}} - 2{\rm{y}}}}{{1
+ {\rm{x}}.2{\rm{y}}}}} \right)$[Formula of tan-1x – tan-1y]
= $\frac{{{\rm{x}} - 2{\rm{y}}}}{{1 + 2{\rm{xy}}}}$
e. tan-13 + tan-1$\frac{1}{3}$
Solution:
tan-13 + tan-1$\frac{1}{3}$
= tan-1$\frac{{\left( {3 + \frac{1}{3}}
\right)}}{{1 - \frac{{3.1}}{3}}}$
= tan-1$\left( {\frac{{9 + 1}}{{3 - 3}}} \right)$
= tan-1$\left( {\frac{{10}}{0}} \right)$= tan-1 ∞ =
$\frac{{\rm{\pi }}}{2}$.
f. tan-13 + tan-1$\frac{1}{3}$
Solution:
Arc sint – Arc cos(-t)
= sin-1t – cos-1(-t) = sin-1t
– {π – cos-1t}
= sin-1t – π + cos-1t
= $\frac{{\rm{\pi }}}{2}$ - π [sin-1x + cos-1x
= $\frac{{\rm{\pi }}}{2}$]
= $ - \frac{{\rm{\pi }}}{2}$.
6. Solve each of the following equations:
a. Cos-1x - sin-1x= 0
Solution:
Cos-1x = sin-1x
Or, cos-1x = cos-1 $\sqrt {1 -
{{\rm{x}}^2}} $
Or, x = $\sqrt {1 - {{\rm{x}}^2}} $
Or, x2 = 1 – x2 [on
squaring]
Or. 2x2 = 1
So, x =$ \pm $$\frac{1}{{\sqrt 2 }}$.
Since x = $ - \frac{1}{{\sqrt 2 }}$ does not satisfy the
given equation
Hence, x = $\frac{1}{{\sqrt 2 }}$.
b. Cos-1x = sin-1x
Solution:
Here, given equation is:
Tan-1x – cot-1x = 0
Or, tan-1x = tan-1$\frac{1}{{\rm{x}}}$.
Or, x = $\frac{1}{{\rm{x}}}$
Or, x2 = 1
So, x = 1.
c. Sin-1$\frac{{\rm{x}}}{2}$ = cos-1x
Solution:
Sin-1$\frac{{\rm{x}}}{2}$ = cos-1x
Or, sin-1$\frac{{\rm{x}}}{2}$ = sin-1$\sqrt
{1 - {{\rm{x}}^2}} $
Or, $\frac{{\rm{x}}}{2}$ = $\sqrt {1 - {{\rm{x}}^2}} $
Squaring , we have, $\frac{{{{\rm{x}}^2}}}{4}$ = 1 – x2.
Or, $\frac{{{{\rm{x}}^2}}}{4}$ + x2 = 1
Or, $\frac{{5{{\rm{x}}^2}}}{4}$ = 1
Or, x2 = $\frac{4}{5}$
So, x = $ \pm \frac{2}{{\sqrt 5 }}$
Since x = $ - \frac{2}{{\sqrt 5 }}$ does not satisfy the
given equation.
So, x = $\frac{2}{{\sqrt 5 }}$.
d.Cos-1x = cos-1$\frac{1}{{2{\rm{x}}}}$
Solution:
Her, given equation is:
Cos-1x = cos-1$\frac{1}{{2{\rm{x}}}}$.
Or. X = $\frac{1}{{2{\rm{x}}}}$
Or, x2 = $\frac{1}{2}$
So, x = $ \pm \frac{1}{{\sqrt 2 }}$.
e. tan-12x=2tan-1x
Solution:
tan-12x = tan-1$\frac{{2{\rm{x}}}}{{1
- {{\rm{x}}^2}}}$
Or, 2x = $\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}$
Or, 2x – 2x3 = 2x
Or, -2x3 = 0
So, x = 0
f. cos-1x + cos-12x=$\frac{1}{2}$ π
Solution:
Here the given equation is, cos-1x + cos-12x
= $\frac{{\rm{\pi }}}{2}$.
Or, cos-12x = $\frac{{\rm{\pi }}}{2}$ - cos-1x.
Or, cos-12x = sin-1x
Or,cos-12x = cos-1+ $\sqrt {1 -
{{\rm{x}}^2}} $
Or, 2x = $\sqrt {1 - {{\rm{x}}^2}} $
Or, 4x2 = 1 – x2 [on
squaring]
Or, 5x2 = 1
So, x = $ \pm $$\frac{1}{{\sqrt 5 }}$.${\rm{\: \:
}}$
g. Sin-1x + cos-1(1 – x) =
$\frac{{\rm{\pi }}}{2}{\rm{\: }}$
Solution:
Sin-1x + cos-1(1 – x) =
$\frac{{\rm{\pi }}}{2}{\rm{\: }}$
Or, cos-1(1 – x) = $\frac{{\rm{\pi }}}{2}$ - sin-1x
Or, cos-1(1 – x) = cos-1 x
Or, 1 – x = x
Or, 1 = 2x
So, x = $\frac{1}{2}$.
h. Sin-1 $\frac{{2{\rm{a}}}}{{1 +
{{\rm{a}}^2}}}{\rm{\: }}$- cos-1$\frac{{1 - {{\rm{b}}^2}}}{{1 +
{{\rm{b}}^2}}}$ = 2tan-1x
Solution:
The given equation is:
Sin-1 $\frac{{2{\rm{a}}}}{{1 +
{{\rm{a}}^2}}}{\rm{\: }}$- cos-1$\frac{{1 - {{\rm{b}}^2}}}{{1 +
{{\rm{b}}^2}}}$ = 2tan-1x.
Or, 2tan-1a – 2tan-1b = 2tan-1x
[2tan-1x = sin-1$\frac{{2{\rm{x}}}}{{1 +
{{\rm{x}}^2}}}$.]
Or, tan-1a – tan-1b = tan-1x
Or, tan-1$\left( {\frac{{{\rm{a}} - {\rm{b}}}}{{1
+ {\rm{ab}}}}} \right)$ = tan-1x
Or, x = $\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$
So, x = $\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$.
i. tan-1$\frac{{{\rm{x}} - 1}}{{{\rm{x}} -
2}}$ + tan-1$\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}$ = tan-11
Solution:
Given equation is tan-1$\frac{{{\rm{x}} -
1}}{{{\rm{x}} - 2}}$ + tan-1$\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}$=
tan-11.
Or, tan-1$\left\{
{\begin{array}{*{20}{c}}{\frac{{{\rm{x}} - 1}}{{{\rm{x}} - 2}} +
\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}}\\{1 - \frac{{{\rm{x}} - 1}}{{{\rm{x}} -
2}}.\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2{\rm{\: }}}}}\end{array}} \right\}$ =
tan-1 1.
Or, $\frac{{\left( {{\rm{x}} + 1} \right)\left( {{\rm{x}} +
2} \right) + \left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} + 1}
\right)}}{{\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} + 1} \right) - \left(
{{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right)}} = 1$
Or, $\frac{{{{\rm{x}}^2} + 2{\rm{x}} - {\rm{x}} - 2 +
{{\rm{x}}^2} + {\rm{x}} - 2{\rm{x}} - 2}}{{{{\rm{x}}^2} - 4 - \left(
{{{\rm{x}}^2} - 1} \right)}}$ = 1
0r, 2x2 – 4 = -3
Or, 2x2 = 1
Or, x2 = $\frac{1}{2}$
So, x = $ \pm \frac{1}{{\sqrt 2 }}$.
j.tan-12x + tan-13x =
$\frac{{\rm{\pi }}}{4}$
Solution:
The given equation is:
Tan-12x + tan-13x = $\frac{{\rm{\pi
}}}{4}$.
Or, tan‑1$\left( {\frac{{2{\rm{x}} +
3{\rm{x}}}}{{1 - 2{\rm{x}}.3{\rm{x}}}}} \right)$ = $\frac{{\rm{\pi
}}}{4}$.
Or, $\frac{{5{\rm{x}}}}{{1 - 6{{\rm{x}}^2}}}$ =
tan$\frac{{\rm{\pi }}}{4}$ = 1
Or, 5x – 1 – 6x2 = 0
Or, 6x2 + 5x – 1 = 0
Or, 6x2 + 6x – x – 1 = 0
Or, 6x(x + 1) – 1 (x + 1) = 0
Or, (x + 1)(6x – 1) = 0
So, x = -1, $\frac{1}{6}$.
k. 3tan-1$\frac{1}{{2 + \sqrt 3 }}$ - tan-1$\frac{1}{{\rm{x}}}$
= tan-1$\frac{1}{3}$
Solution: The
given equation is:
3tan-1$\frac{1}{{2 + \sqrt 3 }}$ - tan-1$\frac{1}{{\rm{x}}}$
= tan-1$\frac{1}{3}$.
Or, 3tan-1 (2 – $\sqrt 3 $) – tan-1$\frac{1}{{\rm{x}}}$
= tan-1$\frac{1}{3}.$
[3tan-1x = tan-1$\left( {\frac{{3{\rm{x}} -
{{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}} \right)$]
Or, tan-1$\left\{ {\frac{{\left( {3\left( {2 -
\sqrt 3 } \right) - {{\left( {2 - \sqrt 3 } \right)}^2}} \right)}}{{1 -
3{{\left( {2 - \sqrt 3 } \right)}^2}}}} \right\}$ – tan-1$\frac{1}{3}{\rm{\:
}}$= tan-1$\frac{1}{{\rm{x}}}$
Or, tan-1$\left\{ {\frac{{12\sqrt 3 -
20}}{{12\sqrt 3 - 20}}} \right\}$ - tan-1$\frac{1}{3}$ = tan-1$\frac{1}{{\rm{x}}}$.
Or, tan-1$\left( {\frac{{1 - \frac{1}{3}}}{{1 +
\frac{{1.1}}{3}}}} \right)$ = tan-1$\frac{1}{{\rm{x}}}$
Or, tan-1$\left( {\frac{2}{3}.\frac{3}{4}}
\right)$ = tan-1$\frac{1}{{\rm{x}}}$.
Or, tan-1$\frac{1}{2}$ = tan-1$\frac{1}{{\rm{x}}}$.
Or, $\frac{1}{2}$ = $\frac{1}{{\rm{x}}}$
So, x = 2.
7. Prove that:
a. x+y+z=xyz, if tan-1x+ tan-1y+tan-1z
= π
Solution:
Tan-1 + tan-1y + tan-1z
= π
Or, tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1
- {\rm{xy}}}}} \right)$ = π – tan-1z
Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = tan (π
– tan-1z)
Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ =
-z [tan(π – tan-1) = –tan.tan-1z = -z]
Or, x + y = -z + xuz
So, x + y + z = xyz.
b. xy + yz + zx =1, if Tan-1 + tan-1y
+ tan-1z = $\frac{{\rm{\pi }}}{2}$.
Solution:
Tan-1 + tan-1y + tan-1z
= $\frac{{\rm{\pi }}}{2}$
Or, tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1
- {\rm{xy}}}}} \right)$ = $\frac{{\rm{\pi }}}{2}$ – tan-1z
Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = tan
($\frac{{\rm{\pi }}}{2}$ – tan-1z) = cot.tan-1z.
Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ =
-z [tan(π – tan-1) = -tan.tan-1z = -z]
Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$= cot.cot-1$\frac{1}{{\rm{z}}}$
= $\frac{1}{{\rm{z}}}$
Or, zx + yz = 1 – xy
So, xy + yz + zx = 1.
8. If cos-1x + cos-1y + cos-1z
= π, show that x2 + y2 + z2 +
2xyz = 1.
Solution:
Here, cos-1x + cos-1y + cos-1z
= π
Or, cos-1 { xy - $\sqrt {\left( {1 -
{{\rm{x}}^2}} \right)\left( {1 - {{\rm{y}}^2}} \right)} $ } = π – cos-1z
Or, xy - $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1
- {{\rm{y}}^2}} \right)} $ = cos (π – cos-1z)
Or, xy - $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1
- {{\rm{y}}^2}} \right)} $ = -cos.cos-1z = -z
Or, xy + z = $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left(
{1 - {{\rm{y}}^2}} \right)} $
Squaring, we have,
X2y2 + 2xyz + z2 =
1 – y2 – x2 + x2y2.
So, x2 + y2 + z2 +
2xyz = 1.
9. Prove that:
(i) tan-1$\frac{3}{5}$ + sin-1$\frac{3}{5}$
= tan-1$\frac{{27}}{{11}}$
Solution:
Let, sin-1$\frac{3}{5}$ = θ →sin θ =
$\frac{3}{5}$.
So, p = 3 , b = 4, h = 5.
So,tanθ = $\frac{3}{4}$.
Or, θ = tan-1$\frac{3}{4}$.
So, sin-1$\frac{3}{5}$ = tan-1$\frac{3}{4}$.
L.H.S. = tan-1$\frac{3}{5}$ + sin-1$\frac{3}{5}$
= tan-1$\frac{3}{5}$ + tan-1$\frac{3}{4}$.
= tan-1$\frac{{\frac{3}{5} + \frac{3}{4}}}{{1 -
\frac{3}{5}.\frac{3}{4}}}$ = tan-1$\frac{{12 + 15}}{{20 - 9}}$ = tan-1$\frac{{27}}{{11}}$
= R.H.S.
(ii) tan-1$\frac{1}{3}$+ tan-1$\frac{1}{5}$
+ tan-1$\frac{1}{7}$ + tan-1$\frac{1}{8}$=$\frac{{\rm{\pi
}}}{4}$
Solution:
L.H.S. = tan-1$\frac{1}{3}$+ tan-1$\frac{1}{5}$
+ tan-1$\frac{1}{7}$ + tan-1$\frac{1}{8}$.
= tan-1$\frac{{\frac{1}{3} + \frac{1}{5}}}{{1 -
\frac{1}{3}.\frac{1}{5}}}$ + tan-1$\frac{{\frac{1}{7} +
\frac{1}{8}}}{{1 - \frac{1}{7}.\frac{1}{8}}}$
= tan-1$\left( {\frac{{5 + 3}}{{14}}} \right)$ +
tan-1$\left( {\frac{{8 + 7}}{{55}}} \right)$ = tan-1$\frac{4}{7}$
+ tan-1$\frac{3}{{11}}$.
= tan-1$\frac{{\frac{4}{7} + \frac{3}{{11}}}}{{1
- \frac{4}{7}.\frac{3}{{11}}}}$ = tan-1$\frac{{44 + 21}}{{77 - 12}}$
= tan-1$\left( {\frac{{65}}{{65}}} \right)$ = tan-1 1
= $\frac{{\rm{\pi }}}{4}$ = R.H.S.
(iii) 2tan-1$\frac{1}{3}$ + tan-1$\frac{1}{7}$
= $\frac{{\rm{\pi }}}{4}$
L.H.S. = 2tan-1$\frac{1}{3}$ + tan-1$\frac{1}{7}$
= tan-1$\left( {\frac{{2.\frac{1}{3}}}{{1 -
\frac{1}{9}{\rm{\: }}}}} \right)$ + tan-1$\frac{1}{7}$
[2tan-1x = tan-1$\left( {\frac{{2{\rm{x}}}}{{1 -
{{\rm{x}}^2}}}} \right)$]
= tan-1$\left( {\frac{2}{3}.\frac{9}{8}} \right)$
+ tan-1$\frac{1}{7}$ = tan-1$\frac{3}{4}$ + tan-1$\frac{1}{7}$.
= tan-1$\left( {\frac{{\frac{3}{4} +
\frac{1}{7}}}{{1 - \frac{3}{4}.\frac{1}{7}}}} \right)$ = tan-1$\left(
{\frac{{21 + 4}}{{28 - 3}}} \right)$ = tan-1$\left(
{\frac{{25}}{{25}}} \right)$
= tan-1 1 = $\frac{{\rm{\pi }}}{4}$ = R.H.S.
(iv) 4(cot-13 + cot-1 2) = π
Solution:
Cosec-1$\sqrt 5 $= θ.
So, cosec θ = $\sqrt 5 $, (p = 1, h = $\sqrt 5 $, b =
2)
So, cot θ = 2
So, θ = cot-1 2
So, cosec-1$\sqrt 5 $ = cos-12 …(i)
L.H.S. = 4(cot-1 3 + cosec-1$\sqrt
5 $)
= 4(cot-13 + cot-1 2)
[from(i)]
= 4 $\left( {{{\tan }^{ - 1}}\frac{1}{3} + {{\tan }^{ -
1}}\frac{1}{2}} \right)$ = 4tan-1$\left( {\frac{{\frac{1}{3} +
\frac{1}{2}}}{{1 - \frac{1}{3}.\frac{1}{2}}}} \right)$ = 4tan-1$\left(
{\frac{5}{5}} \right)$
= 4tan-1 1 = 4. $\frac{{\rm{\pi }}}{4}$ = π
= R.H.S.
(v) tan-11 + tan-12 + tan-13
= π
Solution:
L.H.S. = tan-11 + tan-12 + tan-13
= tan-1 + tan-1$\left( {\frac{{2
+ 3}}{{1 - 2.3}}} \right)$ = tan-1.tan-1(-1) =
$\frac{{\rm{\pi }}}{4}$ + $\frac{{3{\rm{\pi }}}}{4}$ = π.
R.H.S. = 2$\left( {{\rm{ta}}{{\rm{n}}^{ - 1}}1 + {{\tan }^{
- 1}}\frac{1}{2} + {{\tan }^{ - 1}}\frac{1}{3}} \right)$
= 2$\left\{ {{{\tan }^{ - 1}}1 + {{\tan }^{ - 1}}\left(
{\frac{{\frac{1}{2} + \frac{1}{3}}}{{1 - \frac{1}{2}.\frac{1}{3}}}}
\right){\rm{\: }}} \right\}$
= 2$\left\{ {{{\tan }^{ - 1}}1 + {{\tan }^{ - 1}}\left(
{\frac{5}{6}.\frac{6}{4}} \right)} \right\}$
= 2(tan-11 + tan-11) = 2$\left(
{\frac{{\rm{\pi }}}{4} + \frac{{\rm{\pi }}}{4}} \right)$ = π.
10. If sin-1x + Sin-1y + sin-1z
= π, prove that x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 - {{\rm{y}}^2}} $ +
z$\sqrt {1 - {{\rm{z}}^2}} $.
Solution:
Let, sin-1x = A → sinA = x and cosA = $\sqrt {1 -
{{\rm{x}}^2}} $
Sin-1y = B → sinB = y and cosB = $\sqrt {1 -
{{\rm{y}}^2}} $
And sin-1z = C → sinC = z and cosC = $\sqrt {1 -
{{\rm{z}}^2}} $
And sin-1x + sin-1 y + sin-1 z
= π.
Or, A + B + C = π.
So, A + B = π – c
Or, sin(A + B) = sin(π – C) = sinC.
Cos(A + B) = cos(π – C) = - cosC
Now,
L.H.S. = x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 -
{{\rm{y}}^2}} $ + z$\sqrt {1 - {{\rm{z}}^2}} $
= sinA.cosA + sinB.cosB + sinC.cosC.
= $\frac{1}{2}$ (2sinA.cosA +2 sinB.cosB) + sinC.cosC
= $\frac{1}{2}$ (sin2A + sin2B) + sinC.cosC
= $\frac{1}{2}$.2 sin$\frac{{2{\rm{A}} + 2{\rm{B}}}}{2}$
.cos$\frac{{2{\rm{A}} - 2{\rm{B}}}}{2}$ + sinC.cosC.
= sin(A + B). cos(A – B) + sinC.cosC.
= sinC.cos(A – B) + sinC.cosC
[A + B = π – C]
= sinC {cos(A – B) + cosC}
= sinC {cos(A – B) – cos(A +
B)}
[A + B = π – C]
= sinC.2sinA.sinB = 2sinA.sinB.sinC = 2xy = R.H.S.
Hence, x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 -
{{\rm{y}}^2}} $ + z$\sqrt {1 - {{\rm{z}}^2}} $
11. If sin-1x + Sin-1y + sin-1z
= $\frac{π}{2}$, prove
that x2 + y2 + z2 + 2xyz = 1.
Solution:
Proof:
Let sin-1x → x = sinA
Sin-1y = B → y sinB
And sin-1z = C → z = sinC.
Then the given question changed to:
If A + B + C = $\frac{{\rm{\pi }}}{2}$, prove that,
Sin2A + sin2B + sin2C = 1 –
2sinA.sinB.sinC.
From the given part, A + B = $\frac{{\rm{\pi }}}{2}$ – C.
Sin(A + B) = cosC
And cos (A + B) = sinC.
Now, L.H.S.= $\frac{1}{2}$(2sin2A + 2sin2B)
+ sin2C.
= $\frac{1}{2}$ [(1 – cos2A) + (1 – cos2B)] + sin2C.
= $\frac{1}{2}$ [2 – cos2A – cos2B] + sin2c.
= 1 – $\frac{1}{2}$ (cos2A + cos2B) + sin2C.
= 1 – $\frac{1}{2}$ 2cos(A + B).cos(A – B) + sin2C.
= 1 – sinC [cos(A – B) – cos(A + B)]
= 1 – sinC $\left[ {2\sin \frac{{{\rm{A}} - {\rm{B}} +
{\rm{A}} + {\rm{B}}}}{2}.\sin \frac{{{\rm{A}} + {\rm{B}} - {\rm{A}} + {\rm{B}}}}{2}}
\right]$
= 1 – sinC [2sinA.sinB]
= 1 – 2sinA.sinB.sinC = R.H.S>
Hence, x2 + y2 + z2 +
2xyz = 1.