Inverse Circular Function Exercise: 8.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Table of Contents
Inverse Circular Function Exercise: 8.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 8.1

1. Evaluate the following without using the table:

Solution:

a. Sin-1 1 = $\frac{{\rm{\pi }}}{2}$

b. Sin-1 = $\left( { - \frac{1}{2}} \right)$ = –sin-1$\left( {\frac{1}{2}} \right)$ = $ - \frac{{\rm{\pi }}}{6}$

c. Cos-1$\left( { - \frac{{\sqrt 3 }}{1}} \right)$= π – cos-1$\left( {\frac{{\sqrt 3 }}{2}} \right)$= π – $\frac{{\rm{\pi }}}{6}$ = $\frac{{5{\rm{\pi }}}}{6}.$

d. Tan-1(1) = $\frac{{\rm{\pi }}}{4}$

e. Arc cot(-1) = cos-1(-1) = $\frac{{3{\rm{\pi }}}}{4}$

f. Arc tan$\left( { - \frac{1}{{\sqrt 3 }}} \right)$ = tan-1$\left( { - \frac{1}{{\sqrt 3 }}} \right)$ = -tan-1$\left( {\frac{1}{{\sqrt 3 }}} \right)$ = $ - \frac{{\rm{\pi }}}{6}$.

 

2. Express each of the following in terms of x:

Solution:

a. Cos tan-1x

Let tan-1x = θ                 [ tan θ = x.]

Now, costan-1x = cosθ = $\frac{1}{{\sqrt {1 + {{\rm{x}}^2}} }}$ [x = tanθ]

b. sin tan-1x

Let, cot-1x = θ                [cotθ = x]

Now, sin.cot-1x = sinθ = $\frac{1}{{\sqrt {1 + {{\rm{x}}^2}} }}$    [cotθ = x]

c. Tan(Arc cotx) = tancot-1x = tantan-1$\frac{1}{{\rm{x}}}$ = $\frac{1}{{\rm{x}}}$.

d. Cos.sin-1x = cos.cos-1x $\sqrt {1 - {{\rm{x}}^2}} $ = $\sqrt {1 - {{\rm{x}}^2}} $

e. Tan(2tan-1x) = tantan-1$\left( {\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}} \right)$ = $\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}$

f. Sin(2tan-1x) = sin.sin-1$\left( {\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}} \right)$ = $\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}$

g. Cos(2cot-1x)

Let, cos(2cot-1x) = cos2θ = $\frac{{{{\cot }^2}\theta  - 1}}{{{{\cot }^2}\theta  + 1}}$ = $\frac{{{{\rm{x}}^2} - 1}}{{{{\rm{x}}^2} + 1}}$

h. Cot(2 Arc cotx) = cot(2cot-1x) = cot cot-1$\left( {\frac{{{{\rm{x}}^2} - 1}}{{2{\rm{x}}}}} \right)$ = $\frac{{{{\rm{x}}^2} - 1}}{{2{\rm{x}}}}$.

 

3. Evaluate each of the following using the table if necessary:

a. Sin.cos-1$\left( {\frac{3}{5}} \right)$ = sin.sin-1$\sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} $ = sin.sin-1$\frac{4}{5}$ = $\frac{4}{5}$.

b. cos$\left( {{\rm{Arc}}\cos \frac{2}{3}} \right)$ = cos.cos-1$\frac{2}{3}$ = $\frac{2}{3}$

c. Arc tan $\left( {\tan \frac{{\rm{\pi }}}{6}{\rm{\: }}} \right)$ = tan-1.tan $\frac{{\rm{\pi }}}{6}$ = $\frac{{\rm{\pi }}}{6}.$

d. Sin $\left( {{{\tan }^{ - 1}}\frac{3}{4}} \right)$ = sin.sin-1$\frac{3}{5}$ = $\frac{3}{5}$.

e. sin$\left( {2{{\cos }^{ - 1}}\frac{1}{2}} \right)$

Let cos-1 $\frac{1}{2}$= θ

So, cosθ = $\frac{1}{2}$.

Now, sin$\left( {2{{\cos }^{ - 1}}\frac{1}{2}} \right)$= sin2θ = 2sinθ.cosθ.

= 2. $\frac{1}{2}$

= 1

f. Sin-1$\left( {2\cos \frac{{\rm{\pi }}}{3}} \right)$ = sin-1$\left( {\frac{{2.1}}{2}} \right)$ = sin-1(1) = $\frac{{\rm{\pi }}}{2}$.

 

4.Prove each of the following:

a. 2cos-1x = cos-1(2x2 – 1)

Solution:

Let, cos-1x = θ.

So, cosθ = x

Now, cos2θ = 2cos2θ – 1

Or, cos2θ = 2x2 – 1   [cosθ = x]

Or, 2θ = cos-1(2x2 – 1)

So, 2cos-1x = cos-1(2x2 – 1).

 

b. 3cos-1x = cos-1(4x3 – 3x)

Solution:

Let, cos-1x = θ.

So, cosθ = x

Now, cos3θ = 4cos3θ – 3cosθ

Or, cos3θ = 4x3 – 3x   [cosθ = x]

Or, 3θ = cos-1(4x– 3x)

So, 3cos-1x = cos-1(4x3 – 3x).

 

c. 3tan-1x = tan-1$\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$

Solution:

Let tan-1x = θ

So, tanθ = x

Now, tan3θ = $\frac{{3\tan \theta  - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$

Or, tan3θ = $\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$

Or, 3θ = tan-1$\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$

So, 3tan-1x = tan-1$\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}$.

 

d. sin(Arc.cost)= cos(Arc.sint)

Solution:

L.H.S. = sin(Arc.cost) = sin(cos-1) = sin.sin-1$\sqrt {1 - {{\rm{t}}^2}} $ = $\sqrt {1 - {{\rm{t}}^2}} $.

R.H.S = cos(Arc.sint) = cos.sin-1t = cos.cos-1$\sqrt {1 - {{\rm{t}}^2}} $ = $\sqrt {1 - {{\rm{t}}^2}} $.

So, L.H.S. = R.H.S.

 

e. Cos(2 Arc.cost) =2t2 – 1

Solution:

Cos(2 Arc.cost) = cos(2cos-1t) = cos.cos-1(2t2 – 1)

So, cos(2 Arc.cost) = 2t2 – 1

 

f. sin(2sin-1x) = 2x.$\sqrt {1 - {{\rm{x}}^2}} $

Solution:

Let, sin-1x = θ.

So. sinθ = x.

Now, sin(2sin-1x) = sin2θ = 2sinθ.cosθ

So, sin(2sin-1x) = 2x.$\sqrt {1 - {{\rm{x}}^2}} $  [sinθ = x]

 

g. cos(sin-1u + cos-1v) = v$\sqrt {1 - {{\rm{u}}^2}} $ – u$\sqrt {1 - {{\rm{v}}^2}} $

Solution:

Let, sin-1u = A → sinA = u and cosA = $\sqrt {1 - {{\rm{u}}^2}} $

And cos-1v = b → cosB = v and sinB = $\sqrt {1 - {{\rm{v}}^2}} $

We have,

Cos(A + B) = cosA.cosB – sinA.sinB

So, cos(sin-1u + cos-1v) = v$\sqrt {1 - {{\rm{u}}^2}} $ – u$\sqrt {1 - {{\rm{v}}^2}} $

 

h. tan-1$\frac{1}{5}{\rm{\: }}$+ tan-1$\frac{1}{7}{\rm{\: }}$= tan-1$\left( {\frac{6}{{17}}} \right)$                                                                                   

Solution:

L.H.S. = tan-1$\frac{1}{5}$ + tan-1$\frac{1}{7}$ = tan-1$\left( {\frac{1}{5}} \right)$ + tan-1$\left( {\frac{1}{7}} \right)$ = tan-1$\frac{{\frac{1}{5} + \frac{1}{7}}}{{1 - \frac{1}{5}.\frac{1}{7}}}$

= tan-1$\left( {\frac{{7 + 5}}{{35 - 1}}} \right)$ = tan-1$\left( {\frac{{12}}{{34}}} \right)$

So, tan-1$\frac{1}{5}{\rm{\: }}$+ tan-1$\frac{1}{7}{\rm{\: }}$= tan-1$\left( {\frac{6}{{17}}} \right)$

 

(i) tan-1 a– tan-1c= tan-1$\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$ + tan-1$\frac{{{\rm{b}} - {\rm{c}}}}{{1 + {\rm{bc}}}}$

Solution:

Here, R.H.S. = tan-1$\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$ + tan-1$\frac{{{\rm{b}} - {\rm{c}}}}{{1 + {\rm{bc}}}}$

= tan-1a – tan-1b + tan-1b – tan-1c = tan-1 a– tan-1c = L.H.S.

 

(j) tan(Arc.tanu – Arc.tanv) = $\frac{{{\rm{u}} - {\rm{v}}}}{{1 + {\rm{uv}}}}$
Solution:

L.H.S. = tan(Arc.tanu – Arc.tanv) = tan(tan-1u – tan-1v)

= tan.tan-1$\frac{{{\rm{u}} - {\rm{v}}}}{{1 + {\rm{uv}}}}$ = $\frac{{{\rm{u}} - {\rm{v}}}}{{1 + {\rm{uv}}}}$ = R.H.S.

 

(k) tan(2tan-1x) =2 tan (tan-1x + tan-1x3)

Solution:

 

(l) tan-1x + tan-1y + tan-1z = tan-1$\frac{{{\rm{x}} + {\rm{y}} + {\rm{z}} - {\rm{xyz}}}}{{1 - {\rm{xy}} - {\rm{zx}} - {\rm{yz}}}}$

Solution:

L.H.S. = tan-1x + tan-1y + tan-1z.

= tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}} \right)$ + tan-1z = tan-1$\frac{{\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}} + {\rm{Z}}} \right)}}{{1 - \frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}.{\rm{z}}}}$

= tan-1$\frac{{{\rm{x}} + {\rm{y}} + {\rm{z}} - {\rm{xyz}}}}{{1 - {\rm{xy}} - {\rm{zx}} - {\rm{yz}}}}$.

 

(m) sin-1$\frac{4}{5}$ + sin-1$\frac{5}{13}$ + sin-1$\frac{16}{65}$= $\frac{{\rm{\pi }}}{2}$

Solution:

L.H.S. = sin-1$\left\{ {\frac{4}{5}\sqrt {1 - {{\left( {\frac{5}{{13}}} \right)}^2}}  + \frac{5}{{13}}\sqrt {1 - {{\left( {\frac{4}{5}} \right)}^2}} } \right\}$ + sin-1$\frac{{16}}{{65}}$.

= sin-1$\left( {\frac{4}{5}.\frac{{12}}{{13}} + \frac{5}{{13}}.\frac{3}{5}} \right)$ + sin-1$\frac{{16}}{{65}}$= sin-1$\left( {\frac{{63}}{{65}}} \right){\rm{\: }}$ + sin-1$\frac{{16}}{{65}}.$

= sin-1$\left\{ {\frac{{63}}{{65}}\sqrt {1 - {{\left( {\frac{{16}}{{65}}} \right)}^2}}  + \frac{{16}}{{65}}\sqrt {1 - {{\left( {\frac{{63}}{{65}}} \right)}^2}} } \right\}$

= sin-1$\left( {\frac{{63}}{{65}}.\frac{{63}}{{65}} + \frac{{16}}{{65}}.\frac{{16}}{{65}}} \right)$ = sin-1$\frac{{3969 + 256}}{{4225}}$.

= sin-1$\left( {\frac{{4225}}{{4225}}} \right)$ = sin-11 = $\frac{{\rm{\pi }}}{2}$ = R.H.S.

 

(n) Prove that: tan-1$\sqrt {\rm{x}} $ = $\frac{1}{2}$ cos-1$\frac{{1 - {\rm{x}}}}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$sin-1$\left( {\frac{{2\sqrt {\rm{x}} }}{{1 + {\rm{x}}}}} \right)$

Solution:

Or, $\frac{1}{2}$cos-1$\frac{{1 - {\rm{x}}}}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$cos-1${\rm{\: }}\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$       [x = tan2θ say]

= $\frac{1}{2}$cos-1 cos2θ = $\frac{1}{2}$.2θ = θ = tan-1$\sqrt {\rm{x}} $.

And, $\frac{1}{2}$sin-1$\frac{{2\sqrt {\rm{x}} }}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$ sin-1$\frac{{2{\rm{tan}}\theta }}{{1 + {{\tan }^2}\theta }}$       [x = tan2θ say]

= $\frac{1}{2}$ sin-1 sin2θ.

= $\frac{1}{2}$.2θ = θ tan-1$\sqrt {\rm{x}} {\rm{\: }}$ [x = tan2θ say]

Hence, tan-1$\sqrt {\rm{x}} $ = $\frac{1}{2}$ cos-1$\frac{{1 - {\rm{x}}}}{{1 + {\rm{x}}}}$ = $\frac{1}{2}$sin-1$\left( {\frac{{2\sqrt {\rm{x}} }}{{1 + {\rm{x}}}}} \right)$.

 

5. Find the value of each of the following:

a. cos$\left( {{\rm{si}}{{\rm{n}}^{ - 1}}\frac{4}{5} + {{\tan }^{ - 1}}\frac{5}{{12}}{\rm{\: }}} \right)$

Solution:

Let sin-1 = $\frac{4}{5}$ = A.

SO, sinA = $\frac{4}{5}$

And, cosA = $\frac{3}{5}$

And tan-1$\frac{5}{{12}}$ = B

So, tanB = $\frac{5}{{12}}$.

CosB = $\frac{{12}}{{13}}$, sinB = $\frac{5}{{13}}$.

Now, cos$\left( {{\rm{si}}{{\rm{n}}^{ - 1}}\frac{4}{5} + {{\tan }^{ - 1}}\frac{5}{{12}}{\rm{\: }}} \right)$

= cos(A + B) = cosA.cosB – sinA.sinB

= $\frac{3}{5}$.$\frac{{12}}{{13}}$ – $\frac{4}{5}$.$\frac{5}{{13}}$ = $\frac{{36 - 20}}{{65}}$ = $\frac{{16}}{{65}}$.

 

b. sin$\left( {{{\cos }^1}\frac{1}{2} + {{\sin }^{ - 1}}\frac{3}{5}} \right)$

Solution:

Let, cos-1$\frac{1}{2}$  = A

So, cos A = $\frac{1}{2}$, sinA = $\frac{{\sqrt 3 }}{2}$

And sin-1$\frac{3}{5}$ = B

So, sinB = $\frac{3}{5}$, cosB = $\frac{4}{5}$.

Now, sin$\left( {{{\cos }^1}\frac{1}{2} + {{\sin }^{ - 1}}\frac{3}{5}} \right)$

= sin(A + B) = sinA.cosB + cosA.sinB

= $\frac{{\sqrt 3 }}{2}$.$\frac{4}{5}$ + $\frac{1}{2}$.$\frac{3}{5}$ = $\frac{{4\sqrt 3  + 3}}{{10}}$.

 

c. tan$\left( {{{\cos }^{ - 1}}\frac{4}{5} - {{\sin }^{ - 1}}\frac{{12}}{{13}}} \right)$

Solution:

Let, cos-1$\frac{4}{5}$ = A

So, cos A = $\frac{4}{5}$

So, tanA = $\frac{3}{4}$

Or, sin-1$\frac{{12}}{{13}}$ = B

So, sinB = $\frac{{12}}{{13}}$

So, tanB = $\frac{{12}}{5}$.

Now, tan$\left( {{{\cos }^{ - 1}}\frac{4}{5} - {{\sin }^{ - 1}}\frac{{12}}{{13}}} \right)$ = tan(A – B)

= $\frac{{{\rm{tanA}} - {\rm{tanB}}}}{{1 + {\rm{tanA}}.{\rm{tanB}}}}$ = $\frac{{\frac{3}{4} - \frac{{12}}{5}}}{{1 + \frac{3}{4}.\frac{{12}}{5}}}$ = $\frac{{15 - 48}}{{20 + 36}}$ = $ - \frac{{33}}{{56}}$.

 

d. tan(tan-1x – tan-12y)

Solution:

tan(tan-1x – tan-12y)

= tan-1$\left( {\frac{{{\rm{x}} - 2{\rm{y}}}}{{1 + {\rm{x}}.2{\rm{y}}}}} \right)$[Formula of tan-1x – tan-1y]

= $\frac{{{\rm{x}} - 2{\rm{y}}}}{{1 + 2{\rm{xy}}}}$

 

e. tan-13 + tan-1$\frac{1}{3}$

Solution:

tan-13 + tan-1$\frac{1}{3}$

= tan-1$\frac{{\left( {3 + \frac{1}{3}} \right)}}{{1 - \frac{{3.1}}{3}}}$

= tan-1$\left( {\frac{{9 + 1}}{{3 - 3}}} \right)$ = tan-1$\left( {\frac{{10}}{0}} \right)$= tan-1 ∞ = $\frac{{\rm{\pi }}}{2}$.

 

f. tan-13 + tan-1$\frac{1}{3}$

Solution:

Arc sint – Arc cos(-t)

= sin-1t – cos-1(-t) = sin-1t – {π – cos-1t}

= sin-1t – π + cos-1t

= $\frac{{\rm{\pi }}}{2}$ - π  [sin-1x + cos-1x = $\frac{{\rm{\pi }}}{2}$]

= $ - \frac{{\rm{\pi }}}{2}$.

 

6. Solve each of the following equations:

a. Cos-1x - sin-1x= 0

Solution:

Cos-1x = sin-1x

Or, cos-1x = cos-1 $\sqrt {1 - {{\rm{x}}^2}} $

Or, x = $\sqrt {1 - {{\rm{x}}^2}} $

Or, x2 = 1 – x2 [on squaring]

Or. 2x2 = 1

So, x =$ \pm $$\frac{1}{{\sqrt 2 }}$.

Since x = $ - \frac{1}{{\sqrt 2 }}$ does not satisfy the given equation

Hence, x = $\frac{1}{{\sqrt 2 }}$.

 

b. Cos-1x = sin-1x

Solution:

Here, given equation is:

Tan-1x – cot-1x = 0

Or, tan-1x = tan-1$\frac{1}{{\rm{x}}}$.

Or, x = $\frac{1}{{\rm{x}}}$

Or, x2 = 1

So, x = 1.

 

c. Sin-1$\frac{{\rm{x}}}{2}$ = cos-1x

Solution:

Sin-1$\frac{{\rm{x}}}{2}$ = cos-1x

Or, sin-1$\frac{{\rm{x}}}{2}$ = sin-1$\sqrt {1 - {{\rm{x}}^2}} $

Or, $\frac{{\rm{x}}}{2}$ = $\sqrt {1 - {{\rm{x}}^2}} $

Squaring , we have, $\frac{{{{\rm{x}}^2}}}{4}$ = 1 – x2.

Or, $\frac{{{{\rm{x}}^2}}}{4}$ + x2 = 1

Or, $\frac{{5{{\rm{x}}^2}}}{4}$ = 1

Or, x2 = $\frac{4}{5}$

So, x = $ \pm \frac{2}{{\sqrt 5 }}$

Since x = $ - \frac{2}{{\sqrt 5 }}$ does not satisfy the given equation.

So, x = $\frac{2}{{\sqrt 5 }}$.

 

d.Cos-1x = cos-1$\frac{1}{{2{\rm{x}}}}$

Solution:

Her, given equation is:

Cos-1x = cos-1$\frac{1}{{2{\rm{x}}}}$.

Or. X = $\frac{1}{{2{\rm{x}}}}$

Or, x2 = $\frac{1}{2}$

So, x = $ \pm \frac{1}{{\sqrt 2 }}$.

 

e. tan-12x=2tan-1x

Solution:

tan-12x = tan-1$\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}$

Or, 2x = $\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}$

Or, 2x – 2x3 = 2x

Or, -2x3 = 0

So, x = 0

 

f. cos-1x + cos-12x=$\frac{1}{2}$ π  

Solution:

Here the given equation is, cos-1x + cos-12x = $\frac{{\rm{\pi }}}{2}$.

Or, cos-12x = $\frac{{\rm{\pi }}}{2}$ - cos-1x.

Or, cos-12x = sin-1x

Or,cos-12x = cos-1+ $\sqrt {1 - {{\rm{x}}^2}} $

Or, 2x = $\sqrt {1 - {{\rm{x}}^2}} $

Or, 4x2 = 1 – x2 [on squaring]

Or, 5x2 = 1

So, x = $ \pm $$\frac{1}{{\sqrt 5 }}$.${\rm{\: \: }}$

 

g. Sin-1x + cos-1(1 – x) = $\frac{{\rm{\pi }}}{2}{\rm{\: }}$

Solution:

Sin-1x + cos-1(1 – x) = $\frac{{\rm{\pi }}}{2}{\rm{\: }}$

Or, cos-1(1 – x) = $\frac{{\rm{\pi }}}{2}$ - sin-1x

Or, cos-1(1 – x) = cos-1 x

Or, 1 – x = x

Or, 1 = 2x

So, x = $\frac{1}{2}$.

 

h. Sin-1 $\frac{{2{\rm{a}}}}{{1 + {{\rm{a}}^2}}}{\rm{\: }}$- cos-1$\frac{{1 - {{\rm{b}}^2}}}{{1 + {{\rm{b}}^2}}}$ = 2tan-1x

Solution:

The given equation is:

Sin-1 $\frac{{2{\rm{a}}}}{{1 + {{\rm{a}}^2}}}{\rm{\: }}$- cos-1$\frac{{1 - {{\rm{b}}^2}}}{{1 + {{\rm{b}}^2}}}$ = 2tan-1x.

Or, 2tan-1a – 2tan-1b = 2tan-1x  [2tan-1x = sin-1$\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}$.]

Or, tan-1a – tan-1b = tan-1x

Or, tan-1$\left( {\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}} \right)$ = tan-1x

Or, x = $\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$

So, x = $\frac{{{\rm{a}} - {\rm{b}}}}{{1 + {\rm{ab}}}}$.

 

i. tan-1$\frac{{{\rm{x}} - 1}}{{{\rm{x}} - 2}}$ + tan-1$\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}$ = tan-11

Solution:

Given equation is tan-1$\frac{{{\rm{x}} - 1}}{{{\rm{x}} - 2}}$ + tan-1$\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}$= tan-11.

Or, tan-1$\left\{ {\begin{array}{*{20}{c}}{\frac{{{\rm{x}} - 1}}{{{\rm{x}} - 2}} + \frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2}}}\\{1 - \frac{{{\rm{x}} - 1}}{{{\rm{x}} - 2}}.\frac{{{\rm{x}} + 1}}{{{\rm{x}} + 2{\rm{\: }}}}}\end{array}} \right\}$ = tan-1 1.

Or, $\frac{{\left( {{\rm{x}} + 1} \right)\left( {{\rm{x}} + 2} \right) + \left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} + 1} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} + 1} \right) - \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right)}} = 1$

Or, $\frac{{{{\rm{x}}^2} + 2{\rm{x}} - {\rm{x}} - 2 + {{\rm{x}}^2} + {\rm{x}} - 2{\rm{x}} - 2}}{{{{\rm{x}}^2} - 4 - \left( {{{\rm{x}}^2} - 1} \right)}}$ = 1

0r, 2x2 – 4 = -3

Or, 2x2 = 1

Or, x2 = $\frac{1}{2}$

So, x = $ \pm \frac{1}{{\sqrt 2 }}$.

 

j.tan-12x + tan-13x = $\frac{{\rm{\pi }}}{4}$

Solution:

The given equation is:

Tan-12x + tan-13x = $\frac{{\rm{\pi }}}{4}$.

Or, tan‑1$\left( {\frac{{2{\rm{x}} + 3{\rm{x}}}}{{1 - 2{\rm{x}}.3{\rm{x}}}}} \right)$ = $\frac{{\rm{\pi }}}{4}$.

Or, $\frac{{5{\rm{x}}}}{{1 - 6{{\rm{x}}^2}}}$ = tan$\frac{{\rm{\pi }}}{4}$ = 1

Or, 5x – 1 – 6x2 = 0

Or, 6x2 + 5x – 1 = 0

Or, 6x2 + 6x – x – 1 = 0

Or, 6x(x + 1) – 1 (x + 1) = 0

Or, (x + 1)(6x – 1) = 0

So, x = -1, $\frac{1}{6}$.

 

k. 3tan-1$\frac{1}{{2 + \sqrt 3 }}$ - tan-1$\frac{1}{{\rm{x}}}$ = tan-1$\frac{1}{3}$

Solution:  The given equation is:

3tan-1$\frac{1}{{2 + \sqrt 3 }}$ - tan-1$\frac{1}{{\rm{x}}}$ = tan-1$\frac{1}{3}$.

Or, 3tan-1 (2 – $\sqrt 3 $) – tan-1$\frac{1}{{\rm{x}}}$ = tan-1$\frac{1}{3}.$                [3tan-1x = tan-1$\left( {\frac{{3{\rm{x}} - {{\rm{x}}^3}}}{{1 - 3{{\rm{x}}^2}}}} \right)$]

Or, tan-1$\left\{ {\frac{{\left( {3\left( {2 - \sqrt 3 } \right) - {{\left( {2 - \sqrt 3 } \right)}^2}} \right)}}{{1 - 3{{\left( {2 - \sqrt 3 } \right)}^2}}}} \right\}$ – tan-1$\frac{1}{3}{\rm{\: }}$= tan-1$\frac{1}{{\rm{x}}}$

Or, tan-1$\left\{ {\frac{{12\sqrt 3  - 20}}{{12\sqrt 3  - 20}}} \right\}$ - tan-1$\frac{1}{3}$ = tan-1$\frac{1}{{\rm{x}}}$.

Or, tan-1$\left( {\frac{{1 - \frac{1}{3}}}{{1 + \frac{{1.1}}{3}}}} \right)$ = tan-1$\frac{1}{{\rm{x}}}$

Or, tan-1$\left( {\frac{2}{3}.\frac{3}{4}} \right)$ = tan-1$\frac{1}{{\rm{x}}}$.

Or, tan-1$\frac{1}{2}$ = tan-1$\frac{1}{{\rm{x}}}$.

Or, $\frac{1}{2}$ = $\frac{1}{{\rm{x}}}$

So, x = 2.

 

7. Prove that:

a. x+y+z=xyz, if tan-1x+ tan-1y+tan-1z = π

Solution:

Tan-1 + tan-1y + tan-1z = π

Or, tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}} \right)$ = π – tan-1z

Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = tan (π – tan-1z)

Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = -z   [tan(π – tan-1) = –tan.tan-1z = -z]

Or, x + y = -z + xuz

So, x + y + z = xyz.

 

b. xy + yz + zx =1, if Tan-1 + tan-1y + tan-1z = $\frac{{\rm{\pi }}}{2}$.

Solution:

Tan-1 + tan-1y + tan-1z = $\frac{{\rm{\pi }}}{2}$

Or, tan-1$\left( {\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}} \right)$ = $\frac{{\rm{\pi }}}{2}$ – tan-1z

Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = tan ($\frac{{\rm{\pi }}}{2}$ – tan-1z) = cot.tan-1z.

Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$ = -z   [tan(π – tan-1) = -tan.tan-1z = -z]

Or, $\frac{{{\rm{x}} + {\rm{y}}}}{{1 - {\rm{xy}}}}$= cot.cot-1$\frac{1}{{\rm{z}}}$ = $\frac{1}{{\rm{z}}}$

Or, zx + yz = 1 – xy

So, xy + yz + zx = 1.

 

8. If cos-1x + cos-1y + cos-1z = π, show that x2 + y2 + z2 + 2xyz = 1.

Solution:

Here, cos-1x + cos-1y + cos-1z = π

Or, cos-1 { xy - $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1 - {{\rm{y}}^2}} \right)} $ } = π – cos-1z

Or, xy - $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1 - {{\rm{y}}^2}} \right)} $ = cos (π – cos-1z)

Or, xy - $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1 - {{\rm{y}}^2}} \right)} $ = -cos.cos-1z = -z

Or, xy + z = $\sqrt {\left( {1 - {{\rm{x}}^2}} \right)\left( {1 - {{\rm{y}}^2}} \right)} $

Squaring, we have,

X2y2 + 2xyz + z2 = 1 – y2 – x2 + x2y2.

So, x2 + y2 + z2 + 2xyz = 1.

 

9. Prove that:

(i) tan-1$\frac{3}{5}$ + sin-1$\frac{3}{5}$ = tan-1$\frac{{27}}{{11}}$

Solution:

Let, sin-1$\frac{3}{5}$ = θ →sin θ = $\frac{3}{5}$.

So, p = 3 , b = 4, h = 5.

So,tanθ = $\frac{3}{4}$.

Or, θ = tan-1$\frac{3}{4}$.

So, sin-1$\frac{3}{5}$ = tan-1$\frac{3}{4}$.

L.H.S. = tan-1$\frac{3}{5}$ + sin-1$\frac{3}{5}$ = tan-1$\frac{3}{5}$ + tan-1$\frac{3}{4}$.

= tan-1$\frac{{\frac{3}{5} + \frac{3}{4}}}{{1 - \frac{3}{5}.\frac{3}{4}}}$ = tan-1$\frac{{12 + 15}}{{20 - 9}}$ = tan-1$\frac{{27}}{{11}}$ = R.H.S.

 

(ii) tan-1$\frac{1}{3}$+ tan-1$\frac{1}{5}$ + tan-1$\frac{1}{7}$ + tan-1$\frac{1}{8}$=$\frac{{\rm{\pi }}}{4}$

Solution:

L.H.S. = tan-1$\frac{1}{3}$+ tan-1$\frac{1}{5}$ + tan-1$\frac{1}{7}$ + tan-1$\frac{1}{8}$.

= tan-1$\frac{{\frac{1}{3} + \frac{1}{5}}}{{1 - \frac{1}{3}.\frac{1}{5}}}$ + tan-1$\frac{{\frac{1}{7} + \frac{1}{8}}}{{1 - \frac{1}{7}.\frac{1}{8}}}$

= tan-1$\left( {\frac{{5 + 3}}{{14}}} \right)$ + tan-1$\left( {\frac{{8 + 7}}{{55}}} \right)$ = tan-1$\frac{4}{7}$ + tan-1$\frac{3}{{11}}$.

= tan-1$\frac{{\frac{4}{7} + \frac{3}{{11}}}}{{1 - \frac{4}{7}.\frac{3}{{11}}}}$ = tan-1$\frac{{44 + 21}}{{77 - 12}}$ = tan-1$\left( {\frac{{65}}{{65}}} \right)$ = tan-1 1

= $\frac{{\rm{\pi }}}{4}$ = R.H.S.

 

(iii) 2tan-1$\frac{1}{3}$ + tan-1$\frac{1}{7}$ = $\frac{{\rm{\pi }}}{4}$

L.H.S. = 2tan-1$\frac{1}{3}$ + tan-1$\frac{1}{7}$

= tan-1$\left( {\frac{{2.\frac{1}{3}}}{{1 - \frac{1}{9}{\rm{\: }}}}} \right)$ + tan-1$\frac{1}{7}$   [2tan-1x = tan-1$\left( {\frac{{2{\rm{x}}}}{{1 - {{\rm{x}}^2}}}} \right)$]

= tan-1$\left( {\frac{2}{3}.\frac{9}{8}} \right)$ + tan-1$\frac{1}{7}$ = tan-1$\frac{3}{4}$ + tan-1$\frac{1}{7}$.

= tan-1$\left( {\frac{{\frac{3}{4} + \frac{1}{7}}}{{1 - \frac{3}{4}.\frac{1}{7}}}} \right)$ = tan-1$\left( {\frac{{21 + 4}}{{28 - 3}}} \right)$ = tan-1$\left( {\frac{{25}}{{25}}} \right)$

= tan-1 1 = $\frac{{\rm{\pi }}}{4}$ = R.H.S.

 

(iv) 4(cot-13 + cot-1 2) = π

Solution:

Cosec-1$\sqrt 5 $= θ.

So, cosec θ = $\sqrt 5 $,  (p = 1, h = $\sqrt 5 $, b = 2)

So, cot θ = 2

So, θ = cot-1 2

So, cosec-1$\sqrt 5 $ = cos-12 …(i)

L.H.S. = 4(cot-1 3 + cosec-1$\sqrt 5 $)

= 4(cot-13 + cot-1 2)    [from(i)]

= 4 $\left( {{{\tan }^{ - 1}}\frac{1}{3} + {{\tan }^{ - 1}}\frac{1}{2}} \right)$ = 4tan-1$\left( {\frac{{\frac{1}{3} + \frac{1}{2}}}{{1 - \frac{1}{3}.\frac{1}{2}}}} \right)$ = 4tan-1$\left( {\frac{5}{5}} \right)$

= 4tan-1 1 = 4. $\frac{{\rm{\pi }}}{4}$ = π = R.H.S.

 

(v) tan-11 + tan-12 + tan-13 = π

Solution:

L.H.S. = tan-11 + tan-12 + tan-13

= tan-1 + tan-1$\left( {\frac{{2 + 3}}{{1 - 2.3}}} \right)$ = tan-1.tan-1(-1) = $\frac{{\rm{\pi }}}{4}$ + $\frac{{3{\rm{\pi }}}}{4}$ = π.

R.H.S. = 2$\left( {{\rm{ta}}{{\rm{n}}^{ - 1}}1 + {{\tan }^{ - 1}}\frac{1}{2} + {{\tan }^{ - 1}}\frac{1}{3}} \right)$

= 2$\left\{ {{{\tan }^{ - 1}}1 + {{\tan }^{ - 1}}\left( {\frac{{\frac{1}{2} + \frac{1}{3}}}{{1 - \frac{1}{2}.\frac{1}{3}}}} \right){\rm{\: }}} \right\}$

= 2$\left\{ {{{\tan }^{ - 1}}1 + {{\tan }^{ - 1}}\left( {\frac{5}{6}.\frac{6}{4}} \right)} \right\}$

= 2(tan-11 + tan-11) = 2$\left( {\frac{{\rm{\pi }}}{4} + \frac{{\rm{\pi }}}{4}} \right)$ = π.

  

10. If sin-1x + Sin-1y + sin-1z = π, prove that x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 - {{\rm{y}}^2}} $ + z$\sqrt {1 - {{\rm{z}}^2}} $.

Solution:

Let, sin-1x = A → sinA = x and cosA = $\sqrt {1 - {{\rm{x}}^2}} $

Sin-1y = B → sinB = y and cosB = $\sqrt {1 - {{\rm{y}}^2}} $

And sin-1z = C → sinC = z and cosC = $\sqrt {1 - {{\rm{z}}^2}} $

And sin-1x + sin-1 y + sin-1 z = π.

Or, A + B + C = π.

So, A + B = π – c

Or, sin(A + B) = sin(π – C) = sinC.

Cos(A + B) = cos(π – C) = - cosC

Now,

L.H.S. = x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 - {{\rm{y}}^2}} $ + z$\sqrt {1 - {{\rm{z}}^2}} $

= sinA.cosA + sinB.cosB + sinC.cosC.

= $\frac{1}{2}$ (2sinA.cosA +2 sinB.cosB) + sinC.cosC

= $\frac{1}{2}$ (sin2A + sin2B) + sinC.cosC

= $\frac{1}{2}$.2 sin$\frac{{2{\rm{A}} + 2{\rm{B}}}}{2}$ .cos$\frac{{2{\rm{A}} - 2{\rm{B}}}}{2}$ + sinC.cosC.

= sin(A + B). cos(A – B) + sinC.cosC.

= sinC.cos(A – B) + sinC.cosC                   [A + B = π – C]

= sinC {cos(A – B) + cosC}

= sinC {cos(A – B) – cos(A + B)}               [A + B = π – C]

= sinC.2sinA.sinB = 2sinA.sinB.sinC = 2xy = R.H.S.

Hence, x$\sqrt {1 - {{\rm{x}}^2}} $ + y$\sqrt {1 - {{\rm{y}}^2}} $ + z$\sqrt {1 - {{\rm{z}}^2}} $

 

11. If sin-1x + Sin-1y + sin-1z = $\frac{π}{2}$, prove that x2 + y2 + z2 + 2xyz = 1.

Solution:

Proof:

Let sin-1x → x = sinA

Sin-1y = B → y sinB

And sin-1z = C → z = sinC.

Then the given question changed to:

If  A + B + C = $\frac{{\rm{\pi }}}{2}$, prove that,

Sin2A + sin2B + sin2C = 1 – 2sinA.sinB.sinC.

From the given part, A + B = $\frac{{\rm{\pi }}}{2}$ – C.

Sin(A + B) = cosC

And cos (A + B) = sinC.

Now, L.H.S.= $\frac{1}{2}$(2sin2A + 2sin2B) + sin2C.

= $\frac{1}{2}$ [(1 – cos2A) + (1 – cos2B)] + sin2C.

= $\frac{1}{2}$ [2 – cos2A – cos2B] + sin2c.

= 1 – $\frac{1}{2}$ (cos2A + cos2B) + sin2C.

= 1 – $\frac{1}{2}$ 2cos(A + B).cos(A – B) + sin2C.

= 1 – sinC [cos(A – B) – cos(A + B)]

= 1 – sinC $\left[ {2\sin \frac{{{\rm{A}} - {\rm{B}} + {\rm{A}} + {\rm{B}}}}{2}.\sin \frac{{{\rm{A}} + {\rm{B}} - {\rm{A}} + {\rm{B}}}}{2}} \right]$

= 1 – sinC [2sinA.sinB]

= 1 – 2sinA.sinB.sinC = R.H.S>

Hence, x2 + y2 + z2 + 2xyz = 1.

About the Author

A free online educational resource provider.

1 comment

  1. I don't think your answers are correct and methods are not even completely correct your answers and my book answers are different. So, I want u guys to correct this mistake thank you
Please do not enter any spam link in the comment box.

Frequently Asked Questions

What is Nepali Educate?

Nepali Educate is an online platform dedicated to providing educational resources, support, and information for students, parents, and educators in Nepal.

What services does Nepali Educate offer?

Nepali Educate offers a range of services, including educational articles, exam preparation resources, career guidance, and information about educational institutions in Nepal.

How can I access the resources on Nepali Educate?

All resources on Nepali Educate are accessible through the website. Simply visit the website and explore the various sections, including articles, exam tips, and career guidance.

Are the resources on Nepali Educate free?

Yes, the majority of the resources on Nepali Educate are available for free. However, there might be some premium or additional services that require a subscription or payment.

How can I contribute to Nepali Educate?

Nepali Educate welcomes contributions from educators, professionals, and students. If you have valuable insights, educational content, or resources to share, you can contact us through the website for contribution opportunities.

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.