Question:
Solution:
The wavelength of light (λ)\(=6.2\times10^{-7}=6.2\times10^{-7}m\),
Distance between the slits and screen (D) = 80 cm = 0.8 m,
Separation of slits (d) =?,
Separation from first to fifth bright fringes (y) = 4β = \(2.5\times10^{-3}\) m
Here, \(\beta=\frac{\lambda D}d\) is the fringe width,
Now,
\(y=\beta=\frac{4\lambda D}d\)
Or, \(d=\frac{4\lambda D}y\)
Or, \(d=\frac{4\times6.2\times10^{-7}\times0.8}{2.5\times10^{-3}}\)
d = 7.936 x 10-4 m
Thus, the required distance is, d = 7.936 x 10-4 m.
Distance between the slits and screen (D) = 80 cm = 0.8 m,
Separation of slits (d) =?,
Separation from first to fifth bright fringes (y) = 4β = \(2.5\times10^{-3}\) m
Here, \(\beta=\frac{\lambda D}d\) is the fringe width,
Now,
\(y=\beta=\frac{4\lambda D}d\)
Or, \(d=\frac{4\lambda D}y\)
Or, \(d=\frac{4\times6.2\times10^{-7}\times0.8}{2.5\times10^{-3}}\)
d = 7.936 x 10-4 m
Thus, the required distance is, d = 7.936 x 10-4 m.