Question Collected from Telegram Group.
How much AgBr could dissolve in 1.0 L of 0.4 M NH3? Assume that [Ag(NH3)2]+ is the only complex formed given, Kf [Ag(NH3)2 +]= 1 × 108 , Ksp(AgBr)= 5.0 × 10-13?
Solution:
AgBr⇌Ag++Br− ---------------(1)
Ag++2NH3⇌[Ag(NH3)2]+ ---------------(2)
Let x = solubility
Then x=[Br−]=[Ag+] initially
However due to very high Kf and
presence of sufficient NH3, almost all of it will converted to [Ag(NH3)2]+ causing
more AgBr to dissolve.
∴ $\frac{{{{[Ag{{\left( {N{H_3}}
\right)}_2}]}^ + }}}{{[A{g^ + }].{{[{{\left( {N{H_3}} \right)}_2}]}^2}}} = 1
\times {10^8}$
$or,{\rm{ }}\frac{x}{{[A{g^ + }].{{[0.4 - 2x]}^2}}} = 1
\times {10^8}$
Also, $[A{g^ + }] = \frac{{{K_{sp}}}}{x} = \frac{{5 \times
{{10}^{ - 13}}}}{x}$
So, ${\rm{ }}\frac{{{x^2}}}{{5 \times {{10}^{ - 13}}.{{[0.4
- 2x]}^2}}} = 1 \times {10^8}$
$ \Rightarrow x = 2.8 \times {10^{ - 3}}mols/lit$