Syllabus: Content to Study
- The Standard equation to an Ellipse
- Some of the terms of ellipse: Major Axis, Minor Axis, Eccentricity, Latus Rectum, Axis, Directrix
- Equation of Ellipse with Centre not at origin
Exercise 8.1
1. Find the coordinates of the vertices, the eccentricity,
the coordinates of the foci, the length of major and minor axes of the
following ellipse.
(i). $\frac{{{{\rm{x}}^2}}}{{16}}$ +
$\frac{{{{\rm{y}}^2}}}{4}$ = 1
Solution
Or, $\frac{{{{\rm{x}}^2}}}{{16}}$ +
$\frac{{{{\rm{y}}^2}}}{4}$ = 1.
Also, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1
Comparing, a2 = 16, b2 = 4.
SO, a = 4 , b = 2.
The coordinates of the vertices = (±a,0) = (±4,0)
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{4}{{16}}$ = $\frac{3}{4}$.
So, e = $\frac{{\sqrt 3 }}{2}$.
The coordinates of the foci = (±ae,0) = (±4,$\frac{{\sqrt 3
}}{2},0)$ = (±$2\sqrt 3 $,0).
Length of major axis = 2a = 2 * 4 = 8.
Length of minor axis = 2b = 2 * 2 = 4.
(ii) $\frac{{{{\rm{x}}^2}}}{{10}}$ +
$\frac{{{{\rm{y}}^2}}}{5}$ = 1
Solution
$\frac{{{{\rm{x}}^2}}}{{10}}$ + $\frac{{{{\rm{y}}^2}}}{5}$ =
1.
Also, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1
a2 = 10, b2 = 5.
Comparing, a = $\sqrt {10} $ , b = $\sqrt 5 $.
The coordinates of the vertices = (±a,0) = (±$\sqrt {10}
$,0)
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{5}{{10}}$ = $\frac{1}{2}$.
So, e = $\frac{1}{{\sqrt 2 }}$.
The coordinates of the foci = (±ae,0) = (±$\sqrt {10}
{\rm{\: }}$* $\frac{1}{{\sqrt 2 }}$, 0$)$ = (±$\sqrt 5 $,0).
Length of major axis = 2a = 2 * $\sqrt {10} $ = 2$\sqrt {10}
$.
Length of minor axis = 2b = 2 $\sqrt 5 $.
(iii) $\frac{{{{\rm{x}}^2}}}{{9}}$ +
$\frac{{{{\rm{y}}^2}}}{16}$ = 1
Solution
Here, the major axis is along y – axis.
$\frac{{{{\rm{x}}^2}}}{{9}}$ + $\frac{{{{\rm{y}}^2}}}{16}$ =
1.
Also, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1
a2 = 16, b2 = 9.
Comparing, a = 4 , b = 3.
The coordinates of the vertices = (0,±a) = (0,±4)
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{9}{{16}}$ =
$\frac{7}{{16}}$.
So, e = $\frac{{\sqrt 7 }}{4}{\rm{\: }}$.
The coordinates of the foci = (0,±ae) = (0, ± 4 *
$\frac{{\sqrt 7 }}{4}){\rm{\: }}$ =(0,±$\sqrt 7 $).
Length of major axis = 2a = 2 * 4 = 8.
Length of minor axis = 2b = 2 * 3 = 6.
(iv) 25x2 + 4y2 = 100
Solution
25x2 + 4y2 = 100
Or, $\frac{{{{\rm{x}}^2}}}{4}$ +
$\frac{{{{\rm{y}}^2}}}{{25}}$ = 1.
Here, the major axis is along y – axis.
a2 = 25, b2 = 4.
So, a= 5 and b = 2.
The coordinates of the vertices = (0,±a) = (0,±5).
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{4}{{25}}$ =
$\frac{{21}}{{25}}$.
So, e = $\frac{{\sqrt {21} }}{5}$.
The coordinates of the foci = (o,±ae) = (0,±5 *
$\frac{{\sqrt {21} }}{5}$) = (0,±$\sqrt {21} $)
Length of major axis = 2a = 2 * 5 = 10.
Length of minor axis = 2b = 2 * 2 = 4.
(v) 3x2 + 4y2 = 36
Solution
3x2 + 4y2 = 36
Or, $\frac{{{{\rm{x}}^2}}}{{12}}$ +
$\frac{{{{\rm{y}}^2}}}{9}$ = 1.
Here, the major axis is along y – axis.
a2 = 12, b2 = 9.
So, a= 2$\sqrt 3 $ and b = 3.
The coordinates of the vertices = (±a,0) = (±2$\sqrt 3 $,0).
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{9}{{12}}$ = $\frac{1}{4}$.
So, e = $\frac{1}{2}$.
The coordinates of the foci = (±ae,0) = (±2$\sqrt 3 $ * $\frac{1}{2}$,
0) = (±$\sqrt 3 $,0).
Length of major axis = 2a = 2 * 2$\sqrt 3 $ = 4$\sqrt 3 $.
Length of minor axis = 2b = 2 *3 = 6.
2. Deduce the equation of the ellipse in the standard
position with the following data.
a. A focus at (-2,0) and a vertex at (5,0).
Solution
a = 5.
ac = 2.
5e = 2.
So, e = $\frac{2}{5}$.
b2 = a2(1 – e2) = 25
$\left( {1 - \frac{4}{{25}}} \right)$ = 21.
The equation of the ellipse is:
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} +
\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1.
Or, $\frac{{{{\rm{x}}^2}}}{{25}}$ +
$\frac{{{{\rm{y}}^2}}}{{21}}$ = 1.
b. A vertex at (±9,0) and eccentricity 2/3.
Solution
ae = $\frac{{10}}{3}$, e = $\frac{2}{3}$.
So, $\frac{2}{3}$a = $\frac{{10}}{3}$
So, a = 5.
Or, b2 = a2(1 – e2) =
25 $\left( {1 - \frac{4}{9}} \right)$ = $\frac{{125}}{9}$.
The equation of the ellipse is
$\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$
= 1.
Or, $\frac{{{{\rm{x}}^2}}}{{25}}$ +
$\frac{{{{\rm{b}}^2}}}{{\frac{{125}}{9}}}$ = 1.
Or, $\frac{{{{\rm{x}}^2}}}{9}$ +
$\frac{{9{{\rm{y}}^2}}}{{125}}$ = 1
Or, 5x2 + 9y2 = 125.
c. A focus at (0,-5) and eccentricity 1/3.
Solution
Major axis is along the y – axis.
ae = 5, e = $\frac{1}{3}$.
Or, a.$\frac{1}{3}$ = 5.
So, a = 15.
Or, b2 = a2(1 – e2) =
225$\left( {1 - \frac{1}{9}} \right)$ = 200.
The equation of the ellipse is:
Or, $\frac{{{{\rm{x}}^2}}}{{200}}$ +
$\frac{{{{\rm{y}}^2}}}{{225}}$ = 1.
Or, 225x2 + 200y2 = 45000
Or, 9x2 + 8y2 = 1800.
d. A focus at (0,3) and length of minor axis 8.
Solution
Major axis along the y –axis.
ae = 3, 2b = 8.
Or, b2 = a2(1 – e2).
Or, b2 = a2 – a2.e2
Or, 16 = a2 – 9.
Or, a2 = 16 + 9 = 25.
The equation of the ellipse is:
Or, $\frac{{{{\rm{x}}^2}}}{{16}}$ +
$\frac{{{{\rm{y}}^2}}}{{25}}$ = 1.
e. A vertex at (0,8) and passing through (3,32/5)
Solution
Major axis is along the y – axis.
Here, a = 8.
The equation of the ellipse is
$\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}} + \frac{{{{\rm{y}}^2}}}{{64}}$ = 1…..(i)
Since it passes through $\left( {3,\frac{{32}}{5}}
\right){\rm{\: }}$, so.
Or, $\frac{9}{{{{\rm{b}}^2}}}$ +
$\frac{{1024}}{{25{\rm{*}}64}}$ = 1.
Or, $\frac{9}{{{{\rm{b}}^2}}} + \frac{{16}}{{25}}$ = 1.
Or, $\frac{9}{{{{\rm{b}}^2}}}$ = 1 –$\frac{{16}}{{25}}$
Or, $\frac{9}{{{{\rm{b}}^2}}}$ = $\frac{9}{{25}}$
So, b2 = 25.
The equation of the ellipse is $\frac{{{{\rm{x}}^2}}}{{25}}$
+ $\frac{{{{\rm{y}}^2}}}{{64}}$ = 1 [from(i)]
f. Passing through the points (1,4) and (-3,2).
Solution
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} +
\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1….(i)
It passes through (1,4) and (-3,2),so.
Or, $\frac{1}{{{{\rm{a}}^2}}}$ +
$\frac{{16}}{{{{\rm{b}}^2}}}$ = 1
Or, $\frac{9}{{{{\rm{a}}^2}}}$ + $\frac{4}{{{{\rm{b}}^2}}}$
= 1.
Solving there two equations,
Or, a2 = $\frac{{140}}{{12}}$ = $\frac{{35}}{3}$.
Or, b2 = $\frac{{140}}{8}$ =
$\frac{{35}}{2}$.
From (i), $\frac{{{{\rm{x}}^2}}}{{\frac{{35}}{3}}} +
\frac{{{{\rm{y}}^2}}}{{\frac{{35}}{2}}}$ = 1.
Or, 3x2 + 2y2 = 35.
3. Find eccentricity, the coordinates of the vertices, Centre
and the foci of the following ellipse.
a. $\frac{{{{(x + 2)}^2}}}{{16}} + \frac{{{{(y -
5)}^2}}}{9} = 1$
Solution
or, $\frac{{{{\left( {{\rm{x}} + 2} \right)}^2}}}{{16}}$ + $\frac{{{{\left(
{{\rm{y}} - 5} \right)}^2}}}{9}$ = 1.
Also, $\frac{{{{\left( {{\rm{x}} - {\rm{h}}}
\right)}^2}}}{{{{\rm{a}}^2}}}$ + $\frac{{{{\left( {{\rm{y}} - {\rm{k}}}
\right)}^2}}}{{{{\rm{b}}^2}}}$ = 1.
Comparing h = - 2,k = 5, a2 = 16, b2 =
9.
So, a = 4, b = 3.
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = 1 – $\frac{9}{{16}}$ =
$\frac{7}{{16}}$.
So, e = $\frac{{\sqrt 7 }}{4}$.
The coordinates of the vertices = (h ± a,k)
= (- 2 ± 4,5) i.e. (-6,5) and (2,5).
So, the coordinates of the centre = $\left( {\frac{{ - 6 +
2}}{2},\frac{{5 + 5}}{2}} \right)$ = (-2,5).
The coordinate of the foci = (h ± ae,k) = (- 2 ± 4 *
$\frac{{\sqrt 7 }}{4}$,5)
= (- 2 ± $\sqrt 7 $, 5).
b. $\frac{{{{(x + 6)}^2}}}{4} + \frac{{{y^2}}}{{36}} = 1$
Solution
The major axis is along the y – axis.
y = - 6, k = 0, a2 = 36, b2 =
4.
So, a = 6, b = 2.
e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $1 - \frac{4}{{36}}$ = $\frac{8}{9}$.
So, e = $\frac{{2\sqrt 2 }}{3}$.
The coordinates of the vertices = (h,k ± a) = (-6,0 ± 6) =
(-6,±6).
The coordinates of the centre = $\left( {\frac{{ - 6 -
6}}{2},\frac{{6 - 6}}{2}} \right)$.
The coordinates of the foci = (h,k ± ae).
= $\left( { - 6,0 \pm 6.\frac{{2\sqrt 2 }}{3}} \right)$ =
(-6,± 4$\sqrt 2 $).
c.$ \frac{{{x^2}}}{8} + \frac{{{{(y - 2)}^2}}}{{12}} = 1$
Solution
Major axis is along the y – axis.
Here, a2 = 12, b2 = 8, h =
0, k = 2.
e2 = 1 – $\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$
= 1 – $\frac{8}{{12}}$ = $\frac{1}{3}$.
So, e = $\frac{1}{{\sqrt 3 }}$.
The coordinates of the vertices = (h,k ± a) = (0,2 ± 2$\sqrt
3 $) = (0,2).
The coordinates of the foci = (h,k ± ae) = $\left( {0,2 \pm
\sqrt 3 .\frac{1}{{\sqrt 3 }}} \right)$.
= (0,2 ± 2) ie (0,0) and (0,4).
d. 9x2 + 5(y2 – 6y) = 0
Solution
Given ellipse, is 9x2 + 5(y2 –
6y) = 0
Or, 9x2 + 5(y – 3)2 = 45.
So, $\frac{{{{\rm{x}}^2}}}{5} + \frac{{{{\left( {{\rm{y}} -
3} \right)}^2}}}{9}$ = 1…. (i)
So, a2 = 5, b2 = 9 (a < b)
Now, a2 = b2(1 – e2).
Or, 5 = 9(1 – e2).
So, e = $\frac{2}{3}$.
Centre (h,k) = (0,3)
Foci = (h,k ± be) = $\left( {0,3 \pm \frac{{3.2}}{3}}
\right)$ = (0,5),(0,1).
e. x2 + 4y2 – 4x + 24y +
24 = 0
Solution
The given ellipse is, x2 + 4y2 –
4x + 24y + 24 = 0.
Or, (x – 2)2 + 4(y + 3)2 = 4
+ 36 – 24 = 16
So, $\frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{{16}}$ +
$\frac{{{{\left( {{\rm{y}} + 3} \right)}^2}}}{4}$ = 1 …(i)
So, a2 = 16, b2 = 4 and
centre (h,k) = (2,-3).
We have, b2 = a2(1 – e2).
So, e = $\frac{{\sqrt 3 }}{2}$.
And foci = (h ± ae,k) = $\left( {2 \pm 4.\frac{{\sqrt 3
}}{2}, - 3} \right)$ = (2 ± 2$\sqrt 3 $, - 3).
4. Find the equation of the ellipse:
a. major axis is twice its minor axis and which passes
through the point (0,1)
Solution
The equation of the ellipse is:
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(i)
By given, a = 2b
It passes through (0,1) so,
Or, 0 + $\frac{1}{{{{\rm{b}}^2}}}$ = 1
So, b2 = 1
Or, a = 2b = 2 * 1 = 2.
From (i) $\frac{{{{\rm{x}}^2}}}{4} + \frac{{{{\rm{y}}^2}}}{1}$
= 1
So, x2 + 4y2 = 4.
b. latus rectum is equal to half its minor axis and which
passes through th epoint ($\sqrt 6 $,1)
Solution
The equation of the ellipse is:
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(i)
Latus rectum = $\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}$.
Major axis = 2a.
By given, $\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}$ =
$\frac{1}{2}$.2a.
So, a2 = 2b2.
From (i) $\frac{{{{\rm{x}}^2}}}{{2{{\rm{b}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1.
It passes thorugh ($\sqrt 6 $,1), so
$\frac{6}{{2{{\rm{b}}^2}}}$ + $\frac{1}{{{{\rm{b}}^2}}}$ = 1.
Or, $\frac{4}{{{{\rm{b}}^2}}}$ = 1.
So, b2 = 4
Or, a2 = 2b2 = 2 * 4 = 8.
From (i) $\frac{{{{\rm{x}}^2}}}{8}$ +
$\frac{{{{\rm{y}}^2}}}{4}$ = 1.
Or, x2 + 2y2 = 8.
c. latus rectum us 3 and ecentricity is $\frac{1}{{\sqrt
2 }}$
Solution
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1.
By given, $\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}$ = 3.
So, b2 = $\frac{{3{\rm{a}}}}{2}$.
Or, e2 = 1 –
$\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$.
Or, $\frac{1}{2}$ = 1 –
$\frac{{\frac{{3{\rm{a}}}}{2}}}{{{{\rm{a}}^2}}}$.
Or, $\frac{3}{{2{\rm{a}}}}$ = 1 – $\frac{1}{2}$ =
$\frac{1}{2}$.
So, a = 3.
Or, b2 = $\frac{3}{2}$ * 3 = $\frac{9}{2}$.
From (i) $\frac{{{{\rm{x}}^2}}}{9}$ +
$\frac{{{{\rm{y}}^2}}}{{\frac{9}{2}}}{\rm{\: }}$ = 1.
So, x2 + 2y2 = 9.
d. Distance between the two foci is 8 and the semi latus
rectum is 6.
Solution
Let the ellipse be $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(1) (a > b).
So, distance between foci, 2ae = 8.
So, ae = 4 and semi – latus rectum
$\frac{{{{\rm{b}}^2}}}{{\rm{a}}}$ = 6.
We have, b2 = a2(1 – e2).
Or, 6a = a2 – 16
Or, a2 – 6a – 16 = 0
Or, a2 – 8a + 2a – 16 = 0
So, a = 8, - 2. (a ≠ -2).
So, b2 = 6a = 6 * 8 = 48.
Thus, from (i), $\frac{{{{\rm{x}}^2}}}{{64}}$ +
$\frac{{{{\rm{y}}^2}}}{{48}}$ = 1.
So, 3x2 + 4y2 = 192.
e. latus rectum is half the major axis and focus is at
(3,0)
Solution
Let the ellipse be $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}$ +
$\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(i) (a > b).
So, focus (±ae,0) = (3,0)
So, ae = 3.
And $\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}$ = $\frac{1}{2}$(2a).
Or, 2.a2(1 – e2) = a2 à
e = $\frac{1}{{\sqrt 2 }}$.
So, a = 3$\sqrt 2 $, b2 = a2(1 –
e2) = 9
Thus from (i), $\frac{{{{\rm{x}}^2}}}{{18}}$ +
$\frac{{{{\rm{y}}^2}}}{9}$ = 1.
So, x2 + 2y2 = 18.