Syllabus: Content to study
- Tangent and Normal: Geomatical Interpretation
- Equation of Tangent and Normal
- Angle of intersection of two curves
Exercise 16.2
1. Find the slope and the inclination with the x-axis of the tangent
of:
a. 2y = 2 – x2 at x=1
Solution:
2y = 2 – x2
Differentiating both sides w.r.t. x
Or, 2.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0 – 2x.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = - x.
At x = 1, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -1.
So, slope = -1.
And tanθ = -1.
Where θ is the angle made by the tangent with x – axis.
So, θ = $\frac{{3{\rm{\pi }}}}{4}$.
b. y = - 3x – x4 at x = - 1
Solution:
y = - 3x – x4
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -3.1 – 4x3 = - 3 –
4x3.
At x = -1, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -3 – 4 *
(-1)3 = 1.
So, slope = 1.
And tanθ = 1.
So, θ = $\frac{{\rm{\pi }}}{4}$.
c. x2 + y2 = 25 at (-3,4)
Solution:
x2 + y2 = 25
Differentiating both sides w.r.t. x
Or, 2x + 2y $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.
Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -2x.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{\rm{x}}}{{\rm{y}}}$.
At (-3,4), $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{3}{4}$.
So, slope = $\frac{3}{4}$.
And tanθ = $\frac{3}{4}$.
So, θ = tan-1$\left( {\frac{3}{4}} \right)$.
d. $2x^2+3y^2+8x+3=0$ at (-1,1)
Solution:
2x2+3y2+8x+3=0
Differentiating both sides w.r.t. x
4x + 6y. $\frac{{dy}}{{dx}}$ +8=0
6y. $\frac{{dy}}{{dx}}$ = -8-4x
Slope at (-1,1) is
${\frac{{dy}}{{dx}}_{\left( {-1,1} \right)}} = \frac{{ - 8 -
4x}}{{6y}}$
Or, slope = ${\frac{{dy}}{{dx}}_{\left( { - 1,1} \right)}} =
\frac{{ - 8 - 4( - 1)}}{{6(1)}} = \frac{{ - 2}}{3}$
And Angle of inclination: tanθ= $\frac{{ - 2}}{3}$
∴ θ = tan-1($\frac{{ - 2}}{3}$)
2. At what angle does the curve y(1 + x) = x cut the x-axis ?
Solution:
y(1 + x) = x
The curve meets x – axis where y = 0.
0 = x.
So, x= 0
Or, y = $\frac{{\rm{x}}}{{1 + {\rm{x}}}}$.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\left( {1 + {\rm{x}}}
\right).1 - {\rm{x}}.1}}{{{{\left( {1 + {\rm{x}}} \right)}^2}}}$ =
$\frac{1}{{{{\left( {1 + {\rm{x}}} \right)}^2}}}$.
At x = 0, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{{\left( 1
\right)}^2}}}$ = 1.
Tanθ= 1.
So, θ = $\frac{{\rm{\pi }}}{4}$.
3. Find the equations of the tangents and normal to the curve
a. y = 2x3 – 5x2 + 8 at (2, 4)
Solution:
y = 2x3 – 5x2 + 8
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 6x2 – 10x → m =
$\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)$ = 6.22 =
10.2 = 4.
So, equation of tangent, y – 4 = 4(x – 2) → 4x – y = 4.
And equation of normal, y – 4 = $ - \frac{1}{4}$ (x – 2) → x + 4y = 18.
b. x2 – y2 = 7 at (4,-3)
Solution:
x2 – y2 = 7
Differentiating both sides w.r.t. ‘x’.
Or, 2x – 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.
Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{x}}}{{\rm{y}}}$.
At (4,-3)$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{4}{{ - 3}}$ i.e. m = $ -
\frac{4}{3}$.
The equation of the tangent at (4,-3) is:
Or, y – (-3) = m(x – 4).
Or, y + 3 = $ - \frac{4}{3}$(x – 4).
Or, 3y + 9 = -4x + 16.
So, 4x + 3y = 7.
The equation of the normal of the normal at (4,-3) is:
Or, y – y1 = $ - \frac{1}{{\rm{m}}}$(x – x1).
Or, y – (-3) = $ - \frac{1}{{ - \frac{4}{3}}}$(x – 4).
Or, y + 3 = $\frac{3}{4}$(x – 4).
Or, y + 3 = $\frac{3}{4}$ (x – 4).
Or, 4y + 12 = 3x – 12
So, 3x – 4y = 24.
c) y2=2x at (8,4)
4. Find the points on the curve where the tangents are parallel to the
x-axis
a. y = 2x – x2
Solution:
y = 2x – x2
or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2.1 – 2x = 2 – 2x.
For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.
Or, 2 – 2x = 0
So, x = 1.
b. y = x3 – 3x2 + 1
Solution:
y = x3 – 3x2 + 1
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 3x2 – 6x + 0 =
3x2 – 6x.
For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.
So, 3x2 – 6x = 0.
Or, 3x(x – 2) = 0
Either, 2x = 0 Or, x = 0
Or, x – 2 = 0
So, x = 0
Or, x – 2 = 0
So, x = 2.
When x = 0, y = x3 – 3x2 + 1 = 0 – 0 + 1 =
1.
When x = 2, y = x3 – 3x2 + 1 =
(2)3 – 3(2)3 + 1 = - 3.
So, the required points are (0,1) and (2,-3).
c. 4y = x4 – 8x2
Solution:
4y = x4 – 8x2
Or, 4.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 4x3 – 16x.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = x3 – 4x.
For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.
Or, x3 – 4x = 0.
Or, x(x2 – 4) = 0
Either, x = 0,
Or, x2 = 4.
So, x = ± 2.
When x = 0, 4y = x4 – 8x2 = 0 – 0.
So, y = 0.
When x = 2,
4y = x4 – 8x2 = (2)4 –
8(2)2 = -16.
So, y = -4.
When x = -2,
Or, 4y = x4 – 8x2 = (-2)4 –
8(-2)2 = -16.
So, y = -4.
So, the required points are (0,0),(2,-4),(-2,-4).
5. Find the points on the circle $x ^ 2 + y ^ 2$ = 16 at which the tangents
are parallel to the
a) x-axis
b) y-axis
Solution:
x2 + y2 = 16
Or, 2x + 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0
Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{\rm{x}}}{{\rm{y}}}$.
For tangent parallel to x –axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
0.
Or, $ - \frac{{\rm{x}}}{{\rm{y}}}$ = 0.
So, x = 0.
Or, x2 + y2 = 16.
Or, 0 + y2 = 16.
So, y = ± 4.
So, the points are (0,4) and (0,-4) where the tangents are parallel to x –
axis.
Again, for tangent parallel to y – axis, $\frac{{{\rm{dx}}}}{{{\rm{dy}}}}$ =
0.
So, $ - \frac{{\rm{y}}}{{\rm{x}}}$ = 0
So, y = 0.
Or, x2 + y2 = 16.
Or, x2 + 0 = 16.
Or, x2 = 16.
So, x = ± 4.
So, the points are (4,0) and (-4,0) where the tangents are parallel to y –
axis,
6)
a. Find the point on the curve $4y = x ^ 2$ where the tangent drawn makes
angle 450 with the x-axis.
Solution:
Given curve is 4y = x2…(i)
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}}}}{4}$ =
$\frac{{\rm{x}}}{2}$ …..(ii)
Let (a,b) be the point on the curve (i) such that, slope at (a,b) is m =
$\frac{{\rm{a}}}{2}$ [from(i)]
Since, the tangent at (a,b) makes an angle of 45° with x – axis so, m = 1.
So, $\frac{{\rm{a}}}{2}$ = 1 → a = 2.
Since (a,b) lies on (i) on 4b = a2 = 22
So, b = 1.
So required point = (2,1).
b. Find the point on the curve $x ^ 2 = 3y + 1$ at which the tangent is
parallel to the line 4x + 3y + 5 = 0
Solution:
Given curve is x2 = 3y + 1 …(i).
So, 2x = 3.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$
= $\frac{{2{\rm{x}}}}{3}$ …(ii)
Let (a,b) be a point on (i) so from (ii), m1 = $\left(
{\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)$(a,b) =
$\frac{{2{\rm{a}}}}{3}$.
The given line is 4x + 3y + 5 = 0 ….(iii).
So, slope m2 = $ - \frac{4}{3}$.
Since the tangent at (a,b) from (i) is parallel to the line (iii) so.
Or, $\frac{{2{\rm{a}}}}{3}$ = $ - \frac{4}{3}$→ a = -2.
Since, (a,b) lies on (i) so a2 = 3b + 1.
Or, (-2)2 = 3b + 1
So, b = 1
So, required point = (-2,1).
c. Find the point on the curve $y ^ 2 = 4x + 1$ at which the tangent is
perpendicular to the line 7x + 2y = 10.
Solution:
Given curve is y2 = 4x + 1 …(i)
So, 2y $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 4
→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{2}{{\rm{y}}}$ …(ii)
Let (a,b) be a point on (i) so from (ii),
m1 = ${\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}}
\right)_{{\rm{a}},{\rm{b}}}}$= $\frac{2}{{\rm{b}}}$.
The given line is 7x + 2y = 10 …(iii)
So, slope m2 = $ - \frac{7}{2}$.
Since the tangent at (a,b) for (i) is perpendicular to (iii) so,
Or, m1.m2 = -1 →$\frac{2}{{\rm{b}}}. - \frac{7}{2}$
= -1.
So, b = 7.
Since (a,b) lies on (i) so,
Or, b2 = 4a + 1
Or, 49 = 4a + 1.
So, a = 12
So, required point is (12,7).
7. Show that the equation of the tangent to the curve
$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point (a, b)
is $\frac{x}{a} + \frac{y}{b} = 2$
Solution:
Given curve is $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} +
\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1…(i)
So, $\frac{{2{\rm{x}}}}{{{{\rm{a}}^2}}} +
\frac{{2{\rm{y}}}}{{{{\rm{b}}^2}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0
→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ -
\frac{{{\rm{b}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}{\rm{y}}}}$.
So, slope = ${\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}}
\right)_{{\rm{a}}.{\rm{b}}}}$= $\frac{{ -
{{\rm{b}}^2}{\rm{a}}}}{{{{\rm{a}}^2}.{\rm{b}}}}$ = $ -
\frac{{\rm{b}}}{{\rm{a}}}$.
So, the equation of tangent at (a,b) is:
Or, y – b = $ - \frac{{\rm{b}}}{{\rm{a}}}$ (x – a).
Or, ay – ab = -bx + ab.
Or, bx + ay = 2ab.
So, $\frac{{\rm{x}}}{{\rm{a}}}$ + $\frac{{\rm{y}}}{{\rm{b}}}$ = 2.
8. Find the angle of intersection of the curves
a. y = 6 – x2 and 2y = x2
Solution:
Given curve are,
y = 6 – x2 …(i) and
2y = x2 …(ii)
Thus from (i) and (ii) we have,
Or, y = 6 – 2y → 3y = 6.
So, y = 2.
So from (i), x2 = 6 – y = 6 – 2 = 4.
So, x = ± 2.
So, the point of intersection of A(2,2) and B(-2,2).
Now, since y = 6 – x2→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -2x.
And y = $\frac{{{{\rm{x}}^2}}}{2}$→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{2{\rm{x}}}}{2}$ = x.
For A(2,2)
Or, m1 = - 2 * 2 = -4.
Or, m2 = 2.
So, θ = tan-1$\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 +
{{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = tan-1$\left( {\frac{{ - 4 -
2}}{{1 - 4.2}}} \right)$ = tan-1$\left( {\frac{6}{7}} \right)$.
For B(-2,2),
m1 = -2 * 2 = - 4.
m2 = -2.
So, θ = tan-1$\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 +
{{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = tan-1$\left( {\frac{{ - 4 -
2}}{{1 - 4.2}}} \right)$ = tan-1$\left( {\frac{6}{7}} \right)$.
Hence, tan-1$\left( {\frac{6}{7}} \right)$ at (2,2) and tan-1$\left( { - \frac{6}{7}} \right)$ at (-2,2).
b. 4y = x2 + 12 and y2 = 8x at (2,4)
Solution:
4y = x2 + 12
So, 4.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{x}}}{2}$.
At (2,4),m1 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{2}{2}$ = 1.
Again, y2 = 8x.
Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 8.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{4}{{\rm{y}}}$.
At (2,4), m2 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{4}{4}$ = 1.
Tanθ = $\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 +
{{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = $\frac{{1 - 1}}{{1 + 1.1}}$ = 0.
So, θ = 0.
i.e. the tangents coincide.
So, there is a common tangent at (2,4).
c. 2y = x2 and 2x2 y = 1
Solution:
Or, 2y = x2 and 2x2 y = 1.
Solving the two equations,
Or, x2.x2 = 1
Or, x4 = 1.
So, x = ± 1.
When x = 1, y = $\frac{1}{2}$.
Or, x = -1, y = $\frac{1}{2}$.
The common points are $\left( {1,\frac{1}{2}} \right)$ and $\left( { -
1,\frac{1}{2}} \right)$.
Or, 2y = x2.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{2}$.2x = x.
At, $\left( {1,\frac{1}{2}} \right)$, m1 =
$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 1.
Again, 2x2y = 1.
Or, 2x2$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y.4x = 0.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ -
\frac{{4{\rm{xy}}}}{{2{{\rm{x}}^2}}}$ = -2$\frac{{\rm{y}}}{{\rm{x}}}$.
At $\left( {1,\frac{1}{2}} \right)$, m2 =
$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - 2$$\frac{{\frac{1}{2}}}{1}$ = -1.
So, m1 * m2 = 1 * (-1) = -1.
So, the two tangents at $\left( {1,\frac{1}{2}} \right)$ are orthogonal.
Similarly, the two tangents at $\left( { - 1,\frac{1}{2}} \right)$ are
orthogonal.
9. a) Prove that the tangents to the curve $y = x ^ 2 - 3x + 4$ at (1, 2)
and (2, 1) are perpendicular to each other.
Solution:
y=x2-3x+4
Differentiating both side with respect to x, we get
$\frac{{dy}}{{dx}} = 2x – 3$
For the point (1,2) the slope of the tangent
Slope m1 = $[{\frac{{dy}}{{dx}}_{\left( {1,2} \right)}}$=2-3=-1
For the point (2,1) the slope of the tangent
Slope (m2)= $[{\frac{{dy}}{{dx}}_{\left( {2,1} \right)}}$= 2×2-3=1
Since m1
×m2 = -1, then the tangents to the curve $y = x ^ 2 - 3x + 4$ at
(1, 2) and (2, 1) are perpendicular to each other.
b) Prove the tangents to the curve $y = x ^ 3 – 5$ at (1, 5) and (-1, 5)
are parallel.
Solution:
y= x3-5
Differentiating both side with respect to x, we get
$\frac{{dy}}{{dx}} = 3{x^2}$
For the point (1,5) the slope of the tangent
Slope m1 = ${\frac{{dy}}{{dx}}_{at{\rm{ }}(1,5)}}$=3×12=3
For the point (-1,5) the slope of the tangent
Slope (m2)= ${\frac{{dy}}{{dx}}_{at{\rm{ }}(-1,5)}}$= 3×(-1)2=3
Since m1=m2, then the tangents to the curve y = x³ + 6 at the points (-1,5) and (1,5) are parallel.