Application of Derivatives Exercise 16.2 Class 12 Basic Mathematics Solution [NEB UPDATED]

Syllabus: Content to study

  1. Tangent and Normal: Geomatical Interpretation
  2. Equation of Tangent and Normal
  3. Angle of intersection of two curves

Exercise 16.2

1. Find the slope and the inclination with the x-axis of the tangent of:

a. 2y = 2 – x2 at x=1

Solution:

2y = 2 – x2

Differentiating both sides w.r.t. x

Or, 2.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0 – 2x.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = - x.

At x = 1, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -1.

So, slope = -1.

And tanθ = -1.

Where θ is the angle made by the tangent with x – axis.

So, θ = $\frac{{3{\rm{\pi }}}}{4}$.

b. y = - 3x – x4 at x = - 1

Solution:

y = - 3x – x4

Differentiating both sides w.r.t. x

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -3.1 – 4x3 = - 3 – 4x3.

At x = -1, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -3 – 4 * (-1)3 = 1.

So, slope = 1.

And tanθ = 1.

So, θ = $\frac{{\rm{\pi }}}{4}$.

c. x2 + y2 = 25 at (-3,4)

Solution:

x2 + y2 = 25

Differentiating both sides w.r.t. x

Or, 2x + 2y $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.

Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -2x.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{\rm{x}}}{{\rm{y}}}$.

At (-3,4), $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{3}{4}$.

So, slope = $\frac{3}{4}$.

And tanθ = $\frac{3}{4}$.

So, θ = tan-1$\left( {\frac{3}{4}} \right)$.

d. $2x^2+3y^2+8x+3=0$ at (-1,1)

Solution:

2x2+3y2+8x+3=0

Differentiating both sides w.r.t. x

4x + 6y. $\frac{{dy}}{{dx}}$ +8=0

6y. $\frac{{dy}}{{dx}}$ = -8-4x

Slope at (-1,1) is

${\frac{{dy}}{{dx}}_{\left( {-1,1} \right)}} = \frac{{ - 8 - 4x}}{{6y}}$

Or, slope = ${\frac{{dy}}{{dx}}_{\left( { - 1,1} \right)}} = \frac{{ - 8 - 4( - 1)}}{{6(1)}} = \frac{{ - 2}}{3}$

And Angle of inclination: tanθ= $\frac{{ - 2}}{3}$

θ = tan-1($\frac{{ - 2}}{3}$)


2. At what angle does the curve y(1 + x) = x cut the x-axis ?

Solution:

y(1 + x) = x

The curve meets x – axis where y = 0.

0 = x.

So, x= 0

Or, y = $\frac{{\rm{x}}}{{1 + {\rm{x}}}}$.

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\left( {1 + {\rm{x}}} \right).1 - {\rm{x}}.1}}{{{{\left( {1 + {\rm{x}}} \right)}^2}}}$ = $\frac{1}{{{{\left( {1 + {\rm{x}}} \right)}^2}}}$.

At x = 0, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{{\left( 1 \right)}^2}}}$ = 1.

Tanθ= 1.

So, θ = $\frac{{\rm{\pi }}}{4}$.

 

3. Find the equations of the tangents and normal to the curve

a. y = 2x3 – 5x2 + 8 at (2, 4)

Solution:

y = 2x3 – 5x2 + 8

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 6x2 – 10x → m = $\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)$ = 6.22 = 10.2 = 4.

So, equation of tangent, y – 4 = 4(x – 2) → 4x – y = 4.

And equation of normal, y – 4 = $ - \frac{1}{4}$ (x – 2) → x + 4y = 18.

b. x2 – y2 = 7 at (4,-3)

Solution:

x2 – y2 = 7

Differentiating both sides w.r.t. ‘x’.

Or, 2x – 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.

Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{x}}}{{\rm{y}}}$.

At (4,-3)$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{4}{{ - 3}}$ i.e. m = $ - \frac{4}{3}$.

The equation of the tangent at (4,-3) is:

Or, y – (-3) = m(x – 4).

Or, y + 3 = $ - \frac{4}{3}$(x – 4).

Or, 3y + 9 = -4x + 16.

So, 4x + 3y = 7.

The equation of the normal of the normal at (4,-3) is:

Or, y – y1 = $ - \frac{1}{{\rm{m}}}$(x – x1).

Or, y – (-3) = $ - \frac{1}{{ - \frac{4}{3}}}$(x – 4).

Or, y + 3 = $\frac{3}{4}$(x – 4).

Or, y + 3 = $\frac{3}{4}$ (x – 4).

Or, 4y + 12 = 3x – 12

So, 3x – 4y = 24.

c) y2=2x at (8,4)

4. Find the points on the curve where the tangents are parallel to the x-axis

a. y = 2x – x2

Solution:

y = 2x – x2

or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2.1 – 2x = 2 – 2x.

For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.

Or, 2 – 2x = 0

So, x = 1. 

b. y = x3 – 3x2 + 1

Solution:

y = x3 – 3x2 + 1

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 3x2 – 6x + 0 = 3x2 – 6x.

For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.

So, 3x2 – 6x = 0.

Or, 3x(x – 2) = 0

Either, 2x = 0 Or, x = 0

Or, x – 2 = 0

So, x = 0

Or, x – 2 = 0

So, x = 2.

When x = 0, y = x3 – 3x2 + 1 = 0 – 0 + 1 = 1.

When x = 2, y = x3 – 3x2 + 1 = (2)3 – 3(2)3 + 1 = - 3.

So, the required points are (0,1) and (2,-3). 

c. 4y = x4 – 8x2

Solution:

4y = x4 – 8x2

Or, 4.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 4x3 – 16x.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = x3 – 4x.

For tangent parallel to x – axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0.

Or, x3 – 4x = 0.

Or, x(x2 – 4) = 0

Either, x = 0,

Or, x2 = 4.

So, x = ± 2.

When x = 0, 4y = x4 – 8x2 = 0 – 0.

So, y = 0.

When x = 2,

4y = x4 – 8x2 = (2)4 – 8(2)2 = -16.

So, y = -4.

When x = -2,

Or, 4y = x4 – 8x2 = (-2)4 – 8(-2)2 = -16.

So, y = -4.

So, the required points are (0,0),(2,-4),(-2,-4). 

5. Find the points on the circle $x ^ 2 + y ^ 2$ = 16 at which the tangents are parallel to the

a) x-axis

b) y-axis

Solution:

x2 + y2 = 16

Or, 2x + 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0

Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{\rm{x}}}{{\rm{y}}}$.

For tangent parallel to x –axis, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$  = 0.

Or, $ - \frac{{\rm{x}}}{{\rm{y}}}$ = 0.

So, x = 0.

Or, x2 + y2 = 16.

Or, 0 + y2 = 16.

So, y = ± 4.

So, the points are (0,4) and (0,-4) where the tangents are parallel to x – axis.

Again, for tangent parallel to y – axis, $\frac{{{\rm{dx}}}}{{{\rm{dy}}}}$ = 0.

So, $ - \frac{{\rm{y}}}{{\rm{x}}}$ = 0

So, y = 0.

Or, x2 + y2 = 16.

Or, x2 + 0 = 16.

Or, x2 = 16.

So, x = ± 4.

So, the points are (4,0) and (-4,0) where the tangents are parallel to y – axis,

 

6) a. Find the point on the curve $4y = x ^ 2$ where the tangent drawn makes angle 450 with the x-axis.

Solution:

Given curve is 4y = x2…(i)

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}}}}{4}$ = $\frac{{\rm{x}}}{2}$ …..(ii)

Let (a,b) be the point on the curve (i) such that, slope at (a,b) is m = $\frac{{\rm{a}}}{2}$  [from(i)]

Since, the tangent at (a,b) makes an angle of 45° with x – axis so, m = 1.

So, $\frac{{\rm{a}}}{2}$ = 1 → a = 2.

Since (a,b) lies on (i) on 4b = a2 = 22

So, b = 1.

So required point = (2,1). 

b. Find the point on the curve $x ^ 2 = 3y + 1$ at which the tangent is parallel to the line 4x + 3y + 5 = 0

Solution:

Given curve is x2 = 3y + 1 …(i).

So, 2x = 3.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}}}}{3}$ …(ii)

Let (a,b) be a point on (i) so from (ii), m1 = $\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)$(a,b) = $\frac{{2{\rm{a}}}}{3}$.

The given line is 4x + 3y + 5 = 0 ….(iii).

So, slope m2 = $ - \frac{4}{3}$.

Since the tangent at (a,b) from (i) is parallel to the line (iii) so.

Or, $\frac{{2{\rm{a}}}}{3}$ = $ - \frac{4}{3}$→ a = -2.

Since, (a,b) lies on (i) so a2 = 3b + 1.

Or, (-2)2 = 3b + 1

So, b = 1

So, required point = (-2,1). 

c. Find the point on the curve $y ^ 2 = 4x + 1$ at which the tangent is perpendicular to the line 7x + 2y = 10.

Solution:

Given curve is y2 = 4x + 1 …(i)

So, 2y $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 4 →$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{2}{{\rm{y}}}$ …(ii)

Let (a,b) be a point on (i) so from (ii),

m1 = ${\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)_{{\rm{a}},{\rm{b}}}}$= $\frac{2}{{\rm{b}}}$.

The given line is 7x + 2y = 10 …(iii)

So, slope m2 = $ - \frac{7}{2}$.

Since the tangent at (a,b) for (i) is perpendicular to (iii) so,

Or, m1.m2 = -1 →$\frac{2}{{\rm{b}}}. - \frac{7}{2}$ = -1.

So, b = 7.

Since (a,b) lies on (i) so,

Or, b2 = 4a + 1

Or, 49 = 4a + 1.

So, a = 12

So, required point is (12,7).

 

7. Show that the equation of the tangent to the curve $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point (a, b) is $\frac{x}{a} + \frac{y}{b} = 2$

Solution:

Given curve is $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1…(i)

So, $\frac{{2{\rm{x}}}}{{{{\rm{a}}^2}}} + \frac{{2{\rm{y}}}}{{{{\rm{b}}^2}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0 →$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{{\rm{b}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}{\rm{y}}}}$.

So, slope = ${\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)_{{\rm{a}}.{\rm{b}}}}$= $\frac{{ - {{\rm{b}}^2}{\rm{a}}}}{{{{\rm{a}}^2}.{\rm{b}}}}$ = $ - \frac{{\rm{b}}}{{\rm{a}}}$.

So, the equation of tangent at (a,b) is:

Or, y – b = $ - \frac{{\rm{b}}}{{\rm{a}}}$ (x – a).

Or, ay – ab = -bx + ab.

Or, bx + ay = 2ab.

So, $\frac{{\rm{x}}}{{\rm{a}}}$ + $\frac{{\rm{y}}}{{\rm{b}}}$ = 2.

 

8. Find the angle of intersection of the curves

a. y = 6 – x2 and 2y = x2 

Solution:

Given curve are,

y = 6 – x2 …(i) and

2y = x2 …(ii)

Thus from (i) and (ii) we have,

Or, y = 6 – 2y → 3y = 6.

So, y = 2.

So from (i), x2 = 6 – y = 6 – 2 = 4.

So, x = ± 2.

So, the point of intersection of A(2,2) and B(-2,2).

Now, since y = 6 – x2→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -2x.

And y = $\frac{{{{\rm{x}}^2}}}{2}$→$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}}}}{2}$ = x.

For A(2,2)

Or, m1 = - 2 * 2 = -4.

Or, m2 = 2.

So, θ = tan-1$\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 + {{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = tan-1$\left( {\frac{{ - 4 - 2}}{{1 - 4.2}}} \right)$ = tan-1$\left( {\frac{6}{7}} \right)$.

For B(-2,2),

m1 = -2 * 2 = - 4.

m2 = -2.

So, θ = tan-1$\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 + {{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = tan-1$\left( {\frac{{ - 4 - 2}}{{1 - 4.2}}} \right)$ = tan-1$\left( {\frac{6}{7}} \right)$.

Hence, tan-1$\left( {\frac{6}{7}} \right)$ at (2,2) and tan-1$\left( { - \frac{6}{7}} \right)$ at (-2,2). 

b. 4y = x2 + 12 and y2 = 8x at (2,4)

Solution:

4y = x2 + 12

So, 4.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 2x

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{x}}}{2}$.

At (2,4),m1 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{2}{2}$ = 1.

Again, y2 = 8x.

Or, 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 8.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{4}{{\rm{y}}}$.

At (2,4), m2 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{4}{4}$ = 1.

Tanθ = $\left( {\frac{{{{\rm{m}}_1} - {{\rm{m}}_2}}}{{1 + {{\rm{m}}_1}.{{\rm{m}}_2}}}} \right)$ = $\frac{{1 - 1}}{{1 + 1.1}}$ = 0.

So, θ = 0.

i.e. the tangents coincide.

So, there is a common tangent at (2,4). 

c. 2y = x2 and 2x2 y = 1

Solution:

Or, 2y = x2 and 2x2 y = 1.

Solving the two equations,

Or, x2.x2 = 1

Or, x4 = 1.

So, x = ± 1.

When x = 1, y = $\frac{1}{2}$.

Or, x = -1, y = $\frac{1}{2}$.

The common points are $\left( {1,\frac{1}{2}} \right)$ and $\left( { - 1,\frac{1}{2}} \right)$.

Or, 2y = x2.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{2}$.2x = x.

At, $\left( {1,\frac{1}{2}} \right)$, m1 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 1.

Again, 2x2y = 1.

Or, 2x2$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y.4x = 0.

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{4{\rm{xy}}}}{{2{{\rm{x}}^2}}}$ = -2$\frac{{\rm{y}}}{{\rm{x}}}$.

At $\left( {1,\frac{1}{2}} \right)$, m2 = $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - 2$$\frac{{\frac{1}{2}}}{1}$ = -1.

So, m1 * m2 = 1 * (-1) = -1.

So, the two tangents at $\left( {1,\frac{1}{2}} \right)$ are orthogonal.

Similarly, the two tangents at $\left( { - 1,\frac{1}{2}} \right)$ are orthogonal.


9. a) Prove that the tangents to the curve $y = x ^ 2 - 3x + 4$ at (1, 2) and (2, 1) are perpendicular to each other.

Solution:

y=x2-3x+4

Differentiating both side with respect to x, we get

$\frac{{dy}}{{dx}} = 2x – 3$

For the point (1,2) the slope of the tangent

Slope m1 = $[{\frac{{dy}}{{dx}}_{\left( {1,2} \right)}}$=2-3=-1

For the point (2,1) the slope of the tangent

Slope (m2)= $[{\frac{{dy}}{{dx}}_{\left( {2,1} \right)}}$= 2×2-3=1

Since m1 ×m2 = -1, then the tangents to the curve $y = x ^ 2 - 3x + 4$ at (1, 2) and (2, 1) are perpendicular to each other.

b) Prove the tangents to the curve $y = x ^ 3 – 5$ at (1, 5) and (-1, 5) are parallel.

Solution:

y= x3-5

Differentiating both side with respect to x, we get

$\frac{{dy}}{{dx}} = 3{x^2}$

For the point (1,5) the slope of the tangent

Slope m1 = ${\frac{{dy}}{{dx}}_{at{\rm{ }}(1,5)}}$=3×12=3

For the point (-1,5) the slope of the tangent

Slope (m2)= ${\frac{{dy}}{{dx}}_{at{\rm{ }}(-1,5)}}$= 3×(-1)2=3

Since m1=m2, then the tangents to the curve y = x³ + 6 at the points (-1,5) and (1,5) are parallel.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.