Syllabus: Content to study
- Application of Derivatives: Differentials
Exercise 16.1
1. Compute $\Delta $y, dy and $\Delta $y-dy when y =
$\frac{{{{\rm{x}}^2}}}{2}$ + 3x. x = 2and dx = 0.5
Solution:
x = 2
Or, $\Delta $x = dx = 0.5
Or, y = $\frac{{{{\rm{x}}^2}}}{2}$ + 3x.
Or, y + $\Delta $y = $\frac{1}{2}$(x + $\Delta $x)2 +
3(x + $\Delta $x).
Or, $\Delta $y = $\frac{1}{2}$(x + $\Delta $x)2 +
3(x + $\Delta $x) – ($\frac{{{{\rm{x}}^2}}}{2}$ + 3x).
= x.${\rm{\: }}\Delta $x + $\frac{1}{2}{\left( {\Delta
{\rm{x}}} \right)^2}$ + 3$\Delta $x = 2 * 0.5 + $\frac{1}{2}$ * (0.5)2 +
3 * 0.5
= 1.0 + 0.125 + 1.5 = 2.625.
y = f(x) = $\frac{{{{\rm{x}}^2}}}{2}$ + 3x.
f’(x) = x + 3
dy = f’(x).dx = (x + 3).dx = (2 + 3) * 0.5 = 2.5
or, $\Delta $y – dy = 2.625 – 2.5 = 0.125.
2. Find an approximate change in the volume of a cube of
side x m, caused by increasing the sides by 1%. What is the percentage
increment in the volume?
Solution:
v = Volume of cube = x3.
$\Delta $x = dx = 1% of x = 0.01x.
Approximate increase in volume,
dv = 3x2.dx = 3 * x2 * 0.01x =
0.03x3m2.
% increase in volume = $\frac{{0.03{{\rm{x}}^3}}}{{{{\rm{x}}^3}}}$ * 100 = 3%.
3. Use differentials to approximate the change in $x^3$
changes from 5 to 5.01.
Solution:
x = 5, $\Delta $x = dx = 5.01 – 5 = 0.01
y = x3
dy = 3x2.dx = 3 * (5)2 * 0.01 =
0.75.
4. Find an approximate change in 1/x as x changes from 1
to 0:98
Solution:
x = 1
Or, $\Delta $x = dx = 0.98 – 1 = - 0.02.
Or, y = $\frac{1}{{\rm{x}}}$.
Or, dy = $ - \frac{1}{{{{\rm{x}}^2}}}$.dx = $ - \frac{1}{{{{\left( 1 \right)}^2}}}$ * (-0.02) = 0.02.
5. A circular copper plate is
heated so that its radius increases from 5 cm to 5.06 cm. Find the approximate
increase in area and also the actual increase in area.
Solution:
r = 5cms,
$\Delta $r = dr = 5.06 – 5 = 0.06.
A = πr2.
dA = 2πr.dr = 2π * 5 * 0.06 = 0.6πcm2.
So, approximate increase in area = 0.6π cm2.
Again, A = πr2.
A + $\Delta $A = π(r + $\Delta $r)2
Or, $\Delta $A = π(r2 + 2r.${\rm{\: }}\Delta
$r + ($\Delta $r)2) – πr2 = π.${\rm{\: }}\Delta
$r(2r + $\Delta $r)
= π * 0.06(2 * 5 + 0.06) = π * 0.06 * 10.06 = 0.6036 π cm2.
So, actual increase in area = 0.6036 π cm2.
6. Find the approximate increase in the surface area of a
cube if the edge increases from 10 to 10.01 cm. Also calculate the percentage
error in the use of differential approximation.
Solution:
x = side of a cube = 10cms
$\Delta $x = dx = 10.01 – 10 = 0.01 cms
A = surface area = 6x2.
dA = 12x.dx = 12 * 10 * 0.01 = 1.2cm2.
So approximate increase in area = 1.2 cm2.
Again,
A = 6x2
A + $\Delta $A = 6(x + $\Delta $x)2.
$\Delta $A = 6[x2 + 2x$\Delta $x + ($\Delta
$x)2] – 6x2 = 6$\Delta $x(2x + $\Delta $x)
= 6 * 0.01 (2 * 10 + 0.01) = 6 * 0.01 * 20.01 = 1.2006
Actual increase in area = 1.2006
Error = 1.2006 – 1.2 = 0.0006
% Error = $\frac{{0.0006}}{{600}}$ * 100 = 0.0001%.
7. Find the approximate increase in the volume of a
sphere when its radius increases from 2 to 2.1. Find also the actual increase
and compare the two values.
Solution:
r = radius = 2; r + $\Delta $r = 2.1
or, $\Delta $r = 2.1 – r = 2.1 – 2 = 0.01.
v = $\frac{4}{3}$πr3.
dv = $\frac{4}{3}$.π.3r2.dr = 4π * (2)2 *
0.1 = 1.6π
So, approximate increase in volume = 1.6π.
v = $\frac{4}{3}$.πr3.
or, v + $\Delta $v = $\frac{4}{3}$.π(r + $\Delta $r)3.
So, $\Delta $v = $\frac{4}{3}$.π(r + $\Delta $r)3 –
$\frac{4}{3}$.πr3 = $\frac{4}{3}$π[(r + $\Delta $r)3 –
r3]
= $\frac{4}{3}$.π[(2.1)3 – (2)3]
= $\frac{4}{3}$.π * (9.261 – 8).
Actual increase in volume = $\frac{4}{3}$π * 1.261 =
$\frac{{5.044}}{3}$π.
Or, $\frac{{{\rm{dv}}}}{{\Delta {\rm{v}}}}$ =
$\frac{{1.6{\rm{\pi }}}}{{5.004\frac{{\rm{\pi }}}{3}}}$ = 0.9516.
So, dv :$\Delta $v = 0.9516 : 1.