The price of the three commodities X, Y and Z are rupees, x, y and z per unit respectively. A purchase 4 unit of Z and sells 3 unit of X and 5 unit of Y. B purchase 3 unit of Y and sells 2 unit of X and 1 unit of Z. C purchase 1 unit of X and sales 4 unit of Y and 6 unit of Z. In this process A, B &C earns RS. 6000, RS. 5000 and Rs. 13,000 respectively (a)Express the information in the equation form. (b)Find the price per unit of three commodities by using Matrix method. (c)What is maximum profit to one can make if someone had to sell total of five unit and buy a total of five unit?

Solution:

(a) Expressing above information in Equation format:

For A: 3x+5y-4z=6000

For B: 2x-3y+z=5000

For C: - x+4y+6z=13000

These Equation can be written as AX = B

The given system of equations can be written in matrix form as follows:
\[ \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[AX = B\]
Here,
\[A = \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix} X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} B = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
Now,
\[\left| A \right|=3 \left( - 18 - 4 \right) - 5\left( 12 + 1 \right) - 4\left( 8 - 3 \right)\]
\[ = - 66 - 65 - 20\]
\[ = - 151 \neq 0\]
\[\text{ So, }A^{- 1}\text{ exists .} \]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 1 \\ 4 & 6\end{vmatrix} = - 22, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ - 1 & 6\end{vmatrix} = - 13, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & - 3 \\ - 1 & 4\end{vmatrix} = 5\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}5 & - 4 \\ 4 & 6\end{vmatrix} = - 46, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & - 4 \\ - 1 & 6\end{vmatrix} = 14, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & 5 \\ - 1 & 4\end{vmatrix} = - 17\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}5 & - 4 \\ - 3 & 1\end{vmatrix} = - 7, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & - 4 \\ 2 & 1\end{vmatrix} = - 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & 5 \\ 2 & - 3\end{vmatrix} = - 19\]
\[adj A = \begin{bmatrix}- 22 & - 13 & 5 \\ - 46 & 14 & - 17 \\ - 7 & - 11 & - 19\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 453000 \\ - 151000 \\ - 302000\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}3000 \\ 1000 \\ 2000\end{bmatrix}\]
\[ \therefore x = 3000, y = 1000\text{ and }z = 2000\]

(b)Thus, the prices of the three commodities A, B and C are Rs 3000, Rs 1000 and Rs 2000 per unit, respectively .

 

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.