1
Solution:
Here,
a. f–1(1) = {2}
b. f–1(3) = {1, 3, 5}
c. f–1(5) = {4}
d. f–1(2) = ɸ
e. f–1(1, 3, 5) = {1, 2, 3, 4, 5}
f. f–1(2, 4) = ɸ
2.
a.
Solution:
Here, A = {0, 1, 2, 3}, B = {10, 13, 16, 19} and f:A→ B is
f(0) = 10, f(1) = 13, f(2) = 16 and f(3) = 19.
Then f–1:B → A as an ordered pair is {(10, 0),
(13, 1), (16, 2), (19, 3)}
b.
Solution:
Here, x = {–1, 1, 2, 4}, Y = $\left\{ {\frac{1}{5},{\rm{\: }}\frac{2}{5},{\rm{\:
}}\frac{1}{2},{\rm{\: }}1} \right\}{\rm{\: }}$
And f: X → Y is f(–1) = $\frac{1}{5}$, f(1) = 1, f(2) =
$\frac{1}{2}$, f (4) = $\frac{2}{5}$.
Then, f–1: Y → X as an ordered pairs is,
f–1 = $\left\{ {\left( {\frac{1}{5},{\rm{\:
}}1} \right),{\rm{\: }}\left( {1,{\rm{\: }}1} \right),{\rm{\: }}\left(
{\frac{1}{2},{\rm{\: }}2} \right),{\rm{\: }}\left( {\frac{2}{5},{\rm{\: }}4}
\right)} \right\}$
3.
a.
Solution:
Here, let y = f(x) = x + 1
So, y = f(x) → x = f–1(y) …(i)
Also, y = x + 1.
So, x = y – 1.
Or, f–1(y) = y – 1
[from (i)]
Hence, f–1 (x) = x – 1
b.
Solution:
Here, let y = f(x) = 2x + 3
So, y = f(x) → x = f–1(y) …(i)
Also, y = 2x + 3.
So, x = $\frac{{{\rm{y}} - 3}}{2}$
Or, f–1 (y) = $\frac{{{\rm{y}} -
3}}{2}$ [from(i)]
Hence, f–1(x) = $\frac{{{\rm{x}} - 3}}{2}$.
c.
Solution:
Here, let y = f(x) = 2x + 5
So, y = f(x) → x = f–1(y) …(i)
Also, y = 2x + 5.
So, x = $\frac{{{\rm{y}} - 5}}{2}$
Or, f–1 (y) = $\frac{{{\rm{y}} -
5}}{2}$ [from(i)]
Hence, f–1(x) = $\frac{{{\rm{x}} - 5}}{2}$.
d.
Solution:
Here, let y = f(x) = x3 + 5
So, y = f(x) → x = f–1(y) …(i)
Also, y = x3 + 5.
Or, x3 = y – 5
So, x = (y – 5)1/3
Or, f–1 (y) = (y – 5)1/3
[from(i)]
Hence, f–1(x) = (x – 5)1/3.
e.
Solution:
Here, let y = f(x) = 3x – 2
So, y = f(x) = 3x – 2
So, y = f(x) → x = f–1(y) …(i)
Also, y = 3x – 2
So, x = $\frac{{{\rm{y}} + 2}}{3}$
Or, f–1 (y) = $\frac{{{\rm{y}} +
2}}{3}$ [from(i)]
Hence, f–1(x) = $\frac{{{\rm{x}} + 2}}{3}$.
4.
Solution:
a.
Here, f(x) = 2x + 1 and g(x) = 3x – 1.
Now, (gof)(x) = g(f(x)) = g(2x + 1) = 3(2x + 1) –1 = 6x + 2.
And (fog)(x) = f(g(x)) = f(3x – 1) = 2(3x – 1) + 1 = 6x – 1.
b.
f(x) = 3x2 – 4 and g(x) = 2x – 5
Now, (gof)(x) = g(f(x)) = g(3x2 – 4) = 2(3x2 –
4) – 5 = 6x2 – 13.
And (fog)(x) = f(g(x)) = f(2x – 5) = 3(2x – 5)2 –
4
c.
f(x) = x3 – 1 and g(x) = x2
Now, (gof)(x) = g(f(x)) = g(x3 – 1) = (x3 –
1)2.
And (fog)(x) = f(x2) = (x2)3 –
1 = x6 – 1.
d.
f(x) = x2 + 1 and g(x) = x5.
Now, (gof)(x) = g(f(x)) = g(x2 + 1) = (x2 +
1)5.
And (fog)(x) = f(g(x)) = f(x5) = (x5)2 +
1 = x10 + 1.
5.
Solution:
a.
For gof,
so, f(1) = 5, g(5) = 1.
f(2) = 6, g(6) = 2.
f(3) = 7, g(7) = 3.
f(4) = 6.
Now,
(gof)(1) = g(f(1)) = g(5) = 1.
(gof)(2) = g(f(2)) = g(6) = 2.
(gof)(3) = g(f(3)) = g(7) = 3.
(gof)(4) = g(f(4)) = g(6) = 2.
So, gof = {(1, 1), (2, 2), (3, 3), (4, 2)}
For, fog.
g(5) = 1, f(1) = 5.
g(6) = 2, f(2) = 6.
g(7) = 3, f(3) = 7.
Now, (fog)(5) = f(g(5)) = f(1) = 5.
(fog)(6) = f(g(6)) = f(2) = 6.
(fog)(7) = f(g(7)) = f(3) = 7.
So, fog = {(5, 5), (6, 6), (7, 7)}
b.
For gof,
so, f(1) = 2, f(3) = 5, f(4) = 1
And, g(2) = 3, g(5) = 1, g(1) = 3,
Now, (gof)(1) = g(f(1)) = g(2) = 3.
(gof)(3) = g(f(3)) = g(5) = 1.
(gof)(4) = g(f(4)) = g(1) = 3.
So, gof = {(1, 3), (3, 1), (4, 3)}
For, fog.
g(2) = 3, g(5) = 1, g(1) = 3.
f(3) = 5, f(1) = 2, f(4) = 1.
Now, (fog)(1) = f(g(1)) = f(3) = 5.
(fog)(2) = f(g(2)) = f(3) = 5.
(fog)(5) = f(g(5)) = f(1) = 2.
So, fog = {(1, 5), (2, 5), (5, 2)}
6.
a.
Solution:
Here, f : R → R is f(x) = $\frac{1}{{1 - {\rm{x}}}}$,
(x≠1)
To show: (fof)(1/2) = –1.
Now, (fof)(x) = f(f(x)) = f $\left( {\frac{1}{{1 -
{\rm{x}}}}} \right)$
= $\frac{1}{{1 - \left( {\frac{1}{{1 - {\rm{x}}}}}
\right)}}$ = $\frac{{1 - {\rm{x}}}}{{1 - {\rm{x}} - 1}}$ = $\frac{{1 -
{\rm{x}}}}{{ - {\rm{x}}}}$ = $\frac{{{\rm{x}} - 1}}{{\rm{x}}}$.
So, (fof)(x) = $\frac{{{\rm{x}} - 1}}{{\rm{x}}}$
So, (fof)(1/2) = $\frac{{\left( {\frac{1}{2} - 1}
\right)}}{{\frac{1}{2}}}$ = $\frac{{1 - 2}}{{\frac{{\frac{2}{1}}}{2}}}$ = –1
Hence, (fof)(1/2) = –1.
b.
Solution:
Here, f:R→ R is f(x) = $\frac{{{\rm{x}} - 1}}{{{\rm{x}} +
1}}$, (x ≠ –1)
To show: (fof)(4) = –1/4.
Now, (fof)(x) = f(f(x)) = f $\left( {\frac{{{\rm{x}} -
1}}{{{\rm{x}} + 1}}} \right)$
= $\frac{{\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}} -
1}}{{\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}} + 1}}$ = $\frac{{{\rm{x}} - 1 -
{\rm{x}} - 1}}{{{\rm{x}} - 1 + {\rm{x}} + 1}}$ = $\frac{{ - 2}}{{2{\rm{x}}}}$ =
$ - \frac{1}{{\rm{x}}}$
So, (fof)(x) = $ - \frac{1}{{\rm{x}}}$
So, (fof)(4) = $ - \frac{1}{4}$.
7. Find the domain and range of the following function
defined in the set of real numbers.
a. y = 3x + 1
Solution: Here
given function is, y = 3x + 1
Since y is defined for all real values of x, so the domain
of the function is D(f) = R = (–∞, ∞).
Also, y can take all real values of the range of the
function is;
R(f) = R = (–∞, ∞)
b. Y = x2 – 1
Solution:
Given function is
Y = x2 – 1
Since y is defined for all real values of x, so the domain
of the function is D(f) = R = (–∞, ∞).
Also, y can take all real values of the range of the
function is;
D(f) = R(f) = R = (–∞, ∞).
since Y = x2 – 1
therefore x2 = y +
1
since , x2 ≥ 0 so, Y +
1 ≥ 0
therefore y ≥ -1
hence, the range of the function is R(f) = [ -1
,∞ 0)
c. y = x3
Solution:
Given function is:
y = x3
Since y is defined for all real values of x, so the domain
of the function is D(f) = R = (–∞, ∞).
Since x is real x3 is real.
Also, y can take all real values of the range of the
function is;
R(f) = R = (–∞, ∞).
d. y = –x2 + 4x – 3
Solution:
Given function is:
y = –x2 + 4x – 3.
Since y is defined for all real values of x, so the domain
of the function is D(f) = R = (–∞, ∞).
Again, y = –x2 + 4x – 3 = –(x2 – 4x) – 3 = –(x
– 2)2 + 4 – 1 = –(x – 2)2 + 1.
Since, x – 2 ≥ 0 so y ≤ 1 for all real x, Hence, the range
of the function is R(f) = (–∞, 1].
e. y = $\sqrt {{\rm{x}} - 2} {\rm{\: }}$
Solution:
Given function is:
y = $\sqrt {{\rm{x}} - 2} {\rm{\: }}$
Since, y is defined for the real values of x for which x – 2
.
So, x ≥2.
The domain, D(f) = [2, ∞)
Again, since xϵ [2, ∞) so the range is R(f) = [0, ∞).
f. y = $\frac{1}{{{\rm{x}} + 1}}{\rm{\: }}$
Solution:
Given function is:
y = $\frac{1}{{{\rm{x}} + 1}}{\rm{\: }}$
Since, y is defined for the real values of x except x + 1 =
0 .i.e x = –1.
Thus, the domain of the function is: D(f) = R – {–1}.
Since, Y = $\frac{1}{{{\rm{x}} + 1}}$
So, x + 1 = $\frac{1}{{\rm{y}}}$.
So, x = $\frac{1}{{\rm{y}}}$ – 1.
Since, x is not defined for y = 0. So the range of the
function is,
R(f) = R – {0}.
j. y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}{\rm{\:
}}$
Solution:
Given function is:
y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}{\rm{\: }}$
Since, y is not defined for x – 4 = 0 .i.e x = 4.
Thus, the domain of the function is: D(f) = R – {4}.
Again, if x ≠ 4. Then,
y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}$ = x + 4.
Since, x = 4 is not defined for y = 8 will not be in the
range,
Thus, the range is:
R(f) = R – {8}.
k. y =$\sqrt {{{\rm{x}}^2} - 2{\rm{x}} - 8} $
Solution:
Given function is:
y =$\sqrt {{{\rm{x}}^2} - 2{\rm{x}} - 8} $
Since, y is defined only when,,
X2 – 2x – 8 ≥ 0
Or, x2 – 4x + 2x – 8 ≥ 0
Or, x(x – 4) + 2(x – 4) ≥0.
So, (x – 4)(x + 2)≥0 …(i)
This is true only when
Either, x – 4 ≥ 0, x + 2 ≥ 0
= x ≥ 4
x ≥ –2
OR,
x – 4 ≤ 0, x + 2 ≤ 0
= x ≤ 4
x ≤ –2
= x ≥ 4 and x ≤
–2. [x≥–2 and x ≤ 4 does not
satisfy (i) if –2 < x < 4]
Thus, the fomain, D(f) = (–∞–2] U [4, ∞)
Again since,
y2 = x2 – 2x – 8.
= y2 = (x – 1)2 – 9
= y2 + 9 = (x – 1)2, are both
sides positive,
Thus, the range is:
R(f) = {y:y ≥ 0} = [0, ∞)
l. y = $\sqrt {21 - 4{\rm{x}} - {{\rm{x}}^2}} $
Solution:
Given function is:
y = $\sqrt {21 - 4{\rm{x}} - {{\rm{x}}^2}} $
Since, y is defined only when,,
$21 - 4{\rm{x}} - {{\rm{x}}^2}$≥ 0
Or, 21 – 7x + 3x – x2 ≥ 0
Or, 7(3 – x) + x(3 – x) ≥0.
So, (3 – x)(7 + x) ≥ 0 …(i)
This is true only when
Either, 3 – x ≥ 0, 7 + x ≥ 0
= 3 ≥ x
7 ≥ –x
= x ≤ 3, x ≥ –7.
OR,
3 – x ≤ 0, 7 + x ≤ 0
= 3 ≤ x x ≤
–7
= x ≥ 3 and x ≤
–7. [x≥3 and x ≤ –7 does not
satisfy
(i)]
= –7 ≤ x ≤ 3, i.e. [–7, 3]
Thus, the domain of the function is, D(f) = [–7, 3]
Again since,
y2 = 21 – 4x – x2. = 21 – (x2 +
4x)
or, y2 = 25 – (x+2)2
[(x+2)2 = 25 – y2]
Since, (x+2)2≥ 0 for all real x.
SO, 25 – y2 ≥
0.
[y2 ≤ 25}
Since, y is positive square root so 0 ≤ y ≤ 5.
Hence, the range of f is:
R(f) = [0, 5]
m. y = $\frac{{\left| {{\rm{x}} - 1} \right|}}{{{\rm{x}}
- 1}}{\rm{\: }}$
Solution:
Here, the given function is:
y = $\frac{{\left| {{\rm{x}} - 1} \right|}}{{{\rm{x}} -
1}}{\rm{\: }}$
Since, y is defined for all real values of x except at x = 1
so the domain D(f) = R – {–1}
Again, since y = $\frac{{\left| {{\rm{x}} - 1}
\right|}}{{{\rm{x}} - 1}}$ = { 1, if x – 1 ≥ 0 and –1, if x –1 < 0
Thus, the range R(f) = {–1, 1}
9.
Solution:
Test of one – one.
Let, x, yϵ R (domain)
And f(x) = f(y)
Then, cx + d = cy + d.
Then, x= y
So, f is one–one.
Test of onto.
Let yϵ R(range) and let y = cx + d.
i.e. x = $\frac{{{\rm{y}} - {\rm{d}}}}{{\rm{c}}}$ϵ R
(domain)
So, for everyvalue yϵ R (range) there exist x ϵ R (domain),
therefore given function is onto.
Hence, the given function is bijective, so there exits f–1.
For this, let y = cx + d then x = $\frac{{\left( {{\rm{y}} -
{\rm{d}}} \right)}}{{\rm{c}}}$.
I.e. f–1(y)= $\frac{{\left( {{\rm{y}} - {\rm{d}}}
\right)}}{{\rm{c}}}$
Since, y is a dummy variable, so interchanging y to x, we
get,
f–1(x)= $\frac{{\left( {{\rm{x}} - {\rm{d}}}
\right)}}{{\rm{c}}}$
Now, f(f–1(x)) = f$\left( {\frac{{{\rm{x}} -
{\rm{d}}}}{{\rm{c}}}} \right)$ = c . $\frac{{\left( {{\rm{x}} - {\rm{d}}}
\right)}}{{\rm{c}}} + {\rm{\: d}}$ = x
Again, f–1(f(x)) = f–1(cx+d) =
$\frac{{\left( {{\rm{cx}} + {\rm{d}}} \right) - {\rm{d}}}}{{\rm{c}}}$ = x.
Hence, f(f–1(x)) =,f–1(f(x)).
10. (i)
Solution:
Test of one–one
Let x, y ϵ R – {2} and let f(x) = f(y).
Or, $\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$ =
$\frac{{3{\rm{y}}}}{{{\rm{y}} - 2}}$
Or, xy – 2x = xy – 2y
Or, x = y
So, the given function is one–one.
Test of onto.
Let y ϵ R – {3} and let y =
$\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$
Ie. xy – 2y = 3x
Or, x – 3x = 2y
Or, x (y – 3) =
2y
Or, x = $\frac{{2{\rm{y}}}}{{{\rm{y}} - 3}}$ϵ R – {2}
So, the given function is onto.
Hence, the given function is bijective function. So, there
exists inverse function:
For this, let y = $\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$ then
x = $\frac{{2{\rm{y}}}}{{{\rm{y}} - 3}}$.
I.e. f–1(y) = $\frac{{2{\rm{y}}}}{{{\rm{y}} -
3}}$
Since, y is a dummy variable, so interchanging y to x,
f–1(x) = $\frac{{2{\rm{x}}}}{{{\rm{x}} - 3}}$