Relations,Functions and Graphs Exercise 2.3 | Basic Mathematics Solution [NEB UPDATED]

1

Solution:

Here,

a. f–1(1) = {2}

b. f–1(3) = {1, 3, 5}

c. f–1(5) = {4}

d. f–1(2) = ɸ

e. f–1(1, 3, 5) = {1, 2, 3, 4, 5}

f. f–1(2, 4) = ɸ

 

2.

a.

Solution:

Here, A = {0, 1, 2, 3}, B = {10, 13, 16, 19} and f:A→ B is f(0) = 10, f(1) = 13, f(2) = 16 and f(3) = 19.

Then f–1:B → A as an ordered pair is {(10, 0), (13, 1), (16, 2), (19, 3)}

 

b.

Solution:

Here, x = {–1, 1, 2, 4}, Y = $\left\{ {\frac{1}{5},{\rm{\: }}\frac{2}{5},{\rm{\: }}\frac{1}{2},{\rm{\: }}1} \right\}{\rm{\: }}$

And f: X → Y is f(–1) = $\frac{1}{5}$, f(1) = 1, f(2) = $\frac{1}{2}$, f (4) = $\frac{2}{5}$.

Then, f–1: Y → X as an ordered pairs is,

f–1 = $\left\{ {\left( {\frac{1}{5},{\rm{\: }}1} \right),{\rm{\: }}\left( {1,{\rm{\: }}1} \right),{\rm{\: }}\left( {\frac{1}{2},{\rm{\: }}2} \right),{\rm{\: }}\left( {\frac{2}{5},{\rm{\: }}4} \right)} \right\}$

 

3.

a.

Solution:

Here, let y = f(x) = x + 1

So, y = f(x) → x = f–1(y) …(i)

Also, y = x + 1.

So, x = y – 1.

Or, f–1(y) = y – 1             [from (i)]

Hence, f–1 (x) = x – 1

 

b.

Solution:

Here, let y = f(x) = 2x + 3

So, y = f(x) → x = f–1(y) …(i)

Also, y = 2x + 3.

So, x = $\frac{{{\rm{y}} - 3}}{2}$

Or, f–1 (y) = $\frac{{{\rm{y}} - 3}}{2}$  [from(i)]

Hence, f–1(x) = $\frac{{{\rm{x}} - 3}}{2}$.

 

c.

Solution:

Here, let y = f(x) = 2x + 5

So, y = f(x) → x = f–1(y) …(i)

Also, y = 2x + 5.

So, x = $\frac{{{\rm{y}} - 5}}{2}$

Or, f–1 (y) = $\frac{{{\rm{y}} - 5}}{2}$  [from(i)]

Hence, f–1(x) = $\frac{{{\rm{x}} - 5}}{2}$.

 

d.

Solution:

Here, let y = f(x) = x3 + 5

So, y = f(x) → x = f–1(y) …(i)

Also, y = x3 + 5.

Or, x3 = y – 5

So, x = (y – 5)1/3

Or, f–1 (y) = (y – 5)1/3  [from(i)]

Hence, f–1(x) = (x – 5)1/3.

 

e.

Solution:

Here, let y = f(x) = 3x – 2

So, y = f(x) = 3x – 2

So, y = f(x) → x = f–1(y) …(i)

Also, y = 3x – 2

So, x = $\frac{{{\rm{y}} + 2}}{3}$

Or, f–1 (y) = $\frac{{{\rm{y}} + 2}}{3}$  [from(i)]

Hence, f–1(x) = $\frac{{{\rm{x}} + 2}}{3}$.

 

 

4.

Solution:

a.

Here, f(x) = 2x + 1 and g(x) = 3x – 1.

Now, (gof)(x) = g(f(x)) = g(2x + 1) = 3(2x + 1) –1 = 6x + 2.

And (fog)(x) = f(g(x)) = f(3x – 1) = 2(3x – 1) + 1 = 6x – 1.

 

b.

f(x) = 3x2 – 4 and g(x) = 2x – 5

Now, (gof)(x) = g(f(x)) = g(3x2 – 4) = 2(3x2 – 4) – 5 = 6x2 – 13.

And (fog)(x) = f(g(x)) = f(2x – 5) = 3(2x – 5)2 – 4

 

c.

f(x) = x3 – 1 and g(x) = x2

Now, (gof)(x) = g(f(x)) = g(x3 – 1) = (x3 – 1)2.

And (fog)(x) = f(x2) = (x2)3 – 1 = x6 – 1.

 

d.

f(x) = x2 + 1 and g(x) = x5.

Now, (gof)(x) = g(f(x)) = g(x2 + 1) = (x2 + 1)5.

And (fog)(x) = f(g(x)) = f(x5) = (x5)2 + 1 = x10 + 1.

 

5.

Solution:

a.

 For gof,

so, f(1) = 5, g(5) = 1.

f(2) = 6, g(6) = 2.

f(3) = 7, g(7) = 3.

f(4) = 6.

Now,

(gof)(1) = g(f(1)) = g(5) = 1.

(gof)(2) = g(f(2)) = g(6) = 2.

(gof)(3) = g(f(3)) = g(7) = 3.

(gof)(4) = g(f(4)) = g(6) = 2.

So, gof = {(1, 1), (2, 2), (3, 3), (4, 2)}

For, fog.

g(5) = 1, f(1) = 5.

g(6) = 2, f(2) = 6.

g(7) = 3, f(3) = 7.

Now, (fog)(5) = f(g(5)) = f(1) = 5.

(fog)(6) = f(g(6)) = f(2) = 6.

(fog)(7) = f(g(7)) = f(3) = 7.

So, fog = {(5, 5), (6, 6), (7, 7)}

 

b.

For gof,

so, f(1) = 2, f(3) = 5, f(4) = 1

And, g(2) = 3, g(5) = 1, g(1) = 3,

Now, (gof)(1) = g(f(1)) = g(2) = 3.

(gof)(3) = g(f(3)) = g(5) = 1.

(gof)(4) = g(f(4)) = g(1) = 3.

So, gof = {(1, 3), (3, 1), (4, 3)}

For, fog.

g(2) = 3, g(5) = 1, g(1) = 3.

f(3) = 5, f(1) = 2, f(4) = 1.

Now, (fog)(1) = f(g(1)) = f(3) = 5.

(fog)(2) = f(g(2)) = f(3) = 5.

(fog)(5) = f(g(5)) = f(1) = 2.

So, fog = {(1, 5), (2, 5), (5, 2)}

 

6.

a.

Solution:

Here, f : R → R is f(x) = $\frac{1}{{1 - {\rm{x}}}}$, (x≠1)

To show: (fof)(1/2) = –1.

Now, (fof)(x) = f(f(x)) = f $\left( {\frac{1}{{1 - {\rm{x}}}}} \right)$

= $\frac{1}{{1 - \left( {\frac{1}{{1 - {\rm{x}}}}} \right)}}$ = $\frac{{1 - {\rm{x}}}}{{1 - {\rm{x}} - 1}}$ = $\frac{{1 - {\rm{x}}}}{{ - {\rm{x}}}}$ = $\frac{{{\rm{x}} - 1}}{{\rm{x}}}$.

So, (fof)(x) = $\frac{{{\rm{x}} - 1}}{{\rm{x}}}$

So, (fof)(1/2) = $\frac{{\left( {\frac{1}{2} - 1} \right)}}{{\frac{1}{2}}}$ = $\frac{{1 - 2}}{{\frac{{\frac{2}{1}}}{2}}}$ = –1

Hence, (fof)(1/2) = –1.

 

b.

Solution:

Here, f:R→ R is f(x) = $\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}$, (x ≠ –1)

To show: (fof)(4) = –1/4.

Now, (fof)(x) = f(f(x)) = f $\left( {\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}} \right)$

= $\frac{{\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}} - 1}}{{\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}} + 1}}$ = $\frac{{{\rm{x}} - 1 - {\rm{x}} - 1}}{{{\rm{x}} - 1 + {\rm{x}} + 1}}$ = $\frac{{ - 2}}{{2{\rm{x}}}}$ = $ - \frac{1}{{\rm{x}}}$

So, (fof)(x) = $ - \frac{1}{{\rm{x}}}$

So, (fof)(4) = $ - \frac{1}{4}$.

 

7. Find the domain and range of the following function defined in the set of real numbers.

a. y = 3x + 1

Solution:  Here given function is, y = 3x + 1

Since y is defined for all real values of x, so the domain of the function is D(f) = R = (–∞, ∞).

Also, y can take all real values of the range of the function is;

R(f) = R = (–∞, ∞)

 

b. Y = x2 – 1

Solution:

Given function is

Y = x2 – 1

Since y is defined for all real values of x, so the domain of the function is D(f) = R = (–∞, ∞).

Also, y can take all real values of the range of the function is;

D(f) =  R(f) = R = (–∞, ∞).

since  Y  = x2 – 1

therefore x2  =  y + 1 

since ,  x≥ 0 so, Y  + 1 ≥ 0

therefore y ≥ -1

hence, the range of the function  is R(f)  = [ -1 ,∞ 0)

 

c.  y = x3

 Solution:

Given function is:

y = x3

Since y is defined for all real values of x, so the domain of the function is D(f) = R = (–∞, ∞).
Since x is real x3 is real.

Also, y can take all real values of the range of the function is;

R(f) = R = (–∞, ∞).

 

d. y = –x2 + 4x – 3

Solution:           

Given function is:

y = –x2 + 4x – 3.

Since y is defined for all real values of x, so the domain of the function is D(f) = R = (–∞, ∞).
Again, y = –x2 + 4x – 3 = –(x2 – 4x) – 3 = –(x – 2)2 + 4 – 1 = –(x – 2)2 + 1.

Since, x – 2 ≥ 0 so y ≤ 1 for all real x, Hence, the range of the function is R(f) = (–∞, 1].

 

e. y = $\sqrt {{\rm{x}} - 2} {\rm{\: }}$

Solution:

Given function is:

y = $\sqrt {{\rm{x}} - 2} {\rm{\: }}$

Since, y is defined for the real values of x for which x – 2 .

So, x ≥2.

The domain, D(f) = [2, ∞)

Again, since xϵ [2, ∞) so the range is R(f) = [0, ∞).

 

f. y = $\frac{1}{{{\rm{x}} + 1}}{\rm{\: }}$

Solution:

Given function is:

y = $\frac{1}{{{\rm{x}} + 1}}{\rm{\: }}$

Since, y is defined for the real values of x except x + 1 = 0 .i.e x = –1.

Thus, the domain of the function is: D(f) = R – {–1}.

Since, Y = $\frac{1}{{{\rm{x}} + 1}}$

So, x + 1 = $\frac{1}{{\rm{y}}}$.

So, x = $\frac{1}{{\rm{y}}}$ – 1.

Since, x is not defined for y = 0. So the range of the function is,

R(f) = R – {0}.

 

j. y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}{\rm{\: }}$

Solution:

Given function is:

y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}{\rm{\: }}$

Since, y is not defined for x – 4 = 0 .i.e x = 4.

Thus, the domain of the function is: D(f) = R – {4}.

Again, if x ≠ 4. Then,

y = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}$ = x + 4.

Since, x = 4 is not defined for y = 8 will not be in the range,

Thus, the range is:

R(f) = R – {8}.

 

k. y =$\sqrt {{{\rm{x}}^2} - 2{\rm{x}} - 8} $

Solution:

Given function is:

y =$\sqrt {{{\rm{x}}^2} - 2{\rm{x}} - 8} $

Since, y is defined only when,,

X2 – 2x – 8 ≥ 0

Or, x2 – 4x + 2x – 8 ≥ 0

Or, x(x – 4) + 2(x – 4) ≥0.

So, (x – 4)(x + 2)≥0 …(i)

This is true only when

Either, x – 4 ≥ 0, x + 2 ≥ 0

= x ≥ 4                    x ≥ –2

OR,

x – 4 ≤ 0, x + 2 ≤ 0

= x ≤ 4                    x ≤ –2

= x ≥ 4 and x ≤ –2.         [x≥–2 and x ≤ 4 does not satisfy (i) if –2 < x < 4]

Thus, the fomain, D(f) = (–∞–2] U [4, ∞)

Again since,

y2 = x2 – 2x – 8.

= y2 = (x – 1)2 – 9

= y2 + 9 = (x – 1)2, are both sides positive,

Thus, the range is:

R(f) = {y:y ≥ 0} = [0, ∞)

 

l. y = $\sqrt {21 - 4{\rm{x}} - {{\rm{x}}^2}} $

Solution:

Given function is:

y = $\sqrt {21 - 4{\rm{x}} - {{\rm{x}}^2}} $

Since, y is defined only when,,

$21 - 4{\rm{x}} - {{\rm{x}}^2}$≥ 0

Or, 21 – 7x + 3x – x2 ≥ 0

Or, 7(3 – x) + x(3 – x) ≥0.

So, (3 – x)(7 + x) ≥ 0 …(i)

This is true only when

Either, 3 – x ≥ 0, 7 + x ≥ 0

= 3 ≥ x                    7 ≥ –x

= x ≤ 3, x ≥ –7.

OR,

 3 – x ≤ 0, 7 + x ≤ 0

= 3 ≤ x          x ≤ –7

= x ≥ 3 and x ≤ –7.         [x≥3 and x ≤ –7 does not satisfy (i)]                       

= –7 ≤ x ≤ 3, i.e. [–7, 3]

Thus, the domain of the function is, D(f) = [–7, 3]

Again since,

y2 = 21 – 4x – x2. = 21 – (x2 + 4x)

or, y2 = 25 – (x+2)2      [(x+2)2 = 25 – y2]

Since, (x+2)2≥ 0 for all real x.

SO, 25 – y2 ≥ 0.                                [y2 ≤ 25}

Since, y is positive square root so 0 ≤ y ≤ 5.

Hence, the range of f is:

R(f) = [0, 5]

 

m. y = $\frac{{\left| {{\rm{x}} - 1} \right|}}{{{\rm{x}} - 1}}{\rm{\: }}$

Solution:

Here, the given function is:

y = $\frac{{\left| {{\rm{x}} - 1} \right|}}{{{\rm{x}} - 1}}{\rm{\: }}$

Since, y is defined for all real values of x except at x = 1 so the domain D(f) = R – {–1}

Again, since y = $\frac{{\left| {{\rm{x}} - 1} \right|}}{{{\rm{x}} - 1}}$ = { 1, if  x – 1 ≥ 0 and –1, if x –1 < 0

Thus, the range R(f) = {–1, 1}

 

9.

Solution:

Test of one – one.

Let, x, yϵ R (domain)

And f(x) = f(y)

Then, cx + d = cy + d.

Then, x= y

So, f is one–one.

Test of onto.

Let yϵ R(range) and let y = cx + d.

i.e. x = $\frac{{{\rm{y}} - {\rm{d}}}}{{\rm{c}}}$ϵ R (domain)

So, for everyvalue yϵ R (range) there exist x ϵ R (domain), therefore given function is onto.

Hence, the given function is bijective, so there exits f–1.

For this, let y = cx + d then x = $\frac{{\left( {{\rm{y}} - {\rm{d}}} \right)}}{{\rm{c}}}$.

I.e. f–1(y)= $\frac{{\left( {{\rm{y}} - {\rm{d}}} \right)}}{{\rm{c}}}$

Since, y is a dummy variable, so interchanging y to x, we get,

f–1(x)= $\frac{{\left( {{\rm{x}} - {\rm{d}}} \right)}}{{\rm{c}}}$

Now, f(f–1(x)) = f$\left( {\frac{{{\rm{x}} - {\rm{d}}}}{{\rm{c}}}} \right)$ = c . $\frac{{\left( {{\rm{x}} - {\rm{d}}} \right)}}{{\rm{c}}} + {\rm{\: d}}$ = x

Again, f–1(f(x)) = f–1(cx+d) = $\frac{{\left( {{\rm{cx}} + {\rm{d}}} \right) - {\rm{d}}}}{{\rm{c}}}$ = x.

Hence, f(f–1(x)) =,f–1(f(x)).

 

10. (i)

Solution:

Test of one–one

Let x, y ϵ R – {2} and let f(x) = f(y).

Or, $\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$ = $\frac{{3{\rm{y}}}}{{{\rm{y}} - 2}}$

Or, xy – 2x = xy – 2y

Or, x = y

So, the given function is one–one.


Test of onto.

Let y ϵ R – {3} and let y = $\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$

Ie. xy – 2y = 3x

Or, x – 3x = 2y

Or, x (y – 3) = 2y                                                                   

Or, x = $\frac{{2{\rm{y}}}}{{{\rm{y}} - 3}}$ϵ R – {2}

So, the given function is onto.

Hence, the given function is bijective function. So, there exists inverse function:

For this, let y = $\frac{{3{\rm{x}}}}{{{\rm{x}} - 2}}$ then x = $\frac{{2{\rm{y}}}}{{{\rm{y}} - 3}}$.

I.e. f–1(y) = $\frac{{2{\rm{y}}}}{{{\rm{y}} - 3}}$

Since, y is a dummy variable, so interchanging y to x,

f–1(x) = $\frac{{2{\rm{x}}}}{{{\rm{x}} - 3}}$

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.