Limit and Continuity Exercise: 16.4 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 16.4 

1.

(i)

Solution:

f(x) = x2

Left hand limit at x = 4 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – x2 = (4)2 = 16.

Right hand limit at x = 4 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + x2 = (4)2 = 16.

f(4) = (4)2 = 16.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) = f(4)

So, f(x) is continuous at x = 4.

 

(ii)
Solution:

f(x) = 2 – 3x2

Left hand limit at x = 0 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – (2 – 3x2) = 2 – 0 = 2.

Right hand limit at x = 0 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + (2 – 3x2) = 2 – 0 = 2.

f(0) = 2 – 3 * 0 = 2.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + f(x) = f(0)

So, f(x) is continuous at x = 0.

 

(iii)

Solution:

f(x) = 3x2 – 2x + 4.

Left hand limit at x = 1 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (3x2 – 2x + 4) = 3 * 1 – 2 * 1 + 4 = 5.

Right hand limit at x = 1 is

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + (3x2 – 2x + 4) = 3 * 1 – 2 * 1 + 4 = 5.

f(1) = 3 * (1)2 – 2 * 1 + 4 = 5.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) = f(1)

So, f(x) is continuous at x = 1.

 

(iv)

Solution:

f(x) = $\frac{1}{{2{\rm{x}}}}$.

f(0) = $\frac{1}{{2.0}}$ = $\frac{1}{0}$ = does not exist.

Hence, f(x) is discontinuous at x = 0.

 

(v)

Solution:

f(0) = $\frac{1}{{{\rm{x}} - 2}}$

Let x = a ≠ 2.

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a –${\rm{\: }}\frac{1}{{{\rm{x}} - 2}}$ = $\frac{1}{{{\rm{a}} - 2}}$

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + $\frac{1}{{{\rm{x}} - 2}}{\rm{\: }}$= $\frac{1}{{{\rm{a}} - 2}}$.

f(a) = $\frac{1}{{{\rm{a}} - 2}}$.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + f(x) = f(a)

So, f(x) is continuous at x = a ≠ 2.

Note: since a ≠ 2, so a – 2 ≠ 0 and hence $\frac{1}{{{\rm{a}} - 2}}$ is a finite number.

 

(vi)

f(x) = $\frac{1}{{3{\rm{x}}}}$

Let x = a ≠ 0.

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a${\rm{\: }}\frac{1}{{3{\rm{x}}}}$ = $\frac{1}{{3{\rm{a}}}}$

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + $\frac{1}{{3{\rm{x}}}}{\rm{\: }}$= $\frac{1}{{3{\rm{a}}}}$.

f(a) = $\frac{1}{{3{\rm{a}}}}$.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + f(x) = f(a)

So,f(x) is continuous at x = a ≠ 0.

 

(vii)
Solution:

f(x) = $\frac{1}{{1 - {\rm{x}}}}$

f(1) = $\frac{1}{{1 - 1}}$ = $\frac{1}{0}$ which does  not exist.

So, f(x) is discontinuous at x = 3.

 

 

(ix)

Solution:

f(x) = $\frac{{{{\rm{x}}^2} - 9}}{{{\rm{x}} - 3}}$

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{{{\rm{x}}^2} - 9}}{{{\rm{x}} - 3}}$

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 3} \right)}}{{{\rm{x}} - 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 (x + 3) = 3 + 3 = 6.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{{{\rm{x}}^2} - 9}}{{{\rm{x}} - 3}}$.

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – $\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 3} \right)}}{{{\rm{x}} - 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 (x + 3) = 3 + 3 = 6.

f(3) = $\frac{{9 - 9}}{{3 - 3}}$ = $\frac{0}{0}$.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) ≠ f(3)

So, f(x) is continuous at x = 3.

Note: since a ≠ 2, so a – 2 ≠ 0 and hence $\frac{1}{{{\rm{a}} - 2}}$ is a finite number.

 

(x)

Solution:

f(x) = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}$

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}$

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – $\frac{{\left( {{\rm{x}} + 4} \right)\left( {{\rm{x}} - 4} \right)}}{{{\rm{x}} - 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – (x + 4) = 4 + 4 = 8.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + $\frac{{\left( {{\rm{x}} + 4} \right)\left( {{\rm{x}} - 4} \right)}}{{{\rm{x}} - 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 (x + 4) +  4 = 8.

f(x) = $\frac{{{{\left( 4 \right)}^2} - 16}}{{4 - 4}}$ = $\frac{0}{0}$.

So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) ≠ f(0)

So, f(x) is discontinuous at x = 4.

Note: since a ≠ 2, so a – 2 ≠ 0 and hence $\frac{1}{{{\rm{a}} - 2}}$ is a finite number.

 

2.

(i)

Solution:

For  x ≤ 2, f(x) = 2 – x2.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2 – x2) = 2 – 4 = –2.

For x > 2, f(x) = x – 4

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (x – 4) = 2 – 4 = –2.

For, x = 2, f(x) = 2 – x2

f(2) = 2 – (2)2 = –2.

x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = f(2)

So, f(x) is continuous at x = 2.

 

(ii)

Solution:

For x < 2, f(x) = 2x2 + 1.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2x2 + 1) = 2 *4 + 1 = 9.

For x > 2, f(x) = 4x + 1.

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (4x + 1) = 4 * 1 + 1 = 9.

For, x = 2, f(x) = 2x2 + 1.

f(2) = 2 * (2)2 + 1 = 9.

x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = f(2)

So, f(x) is continuous at x = 2.

 

(iii)

Solution:

For x < 3, f(x) = 2x.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – 2x = 2 *3 = 6.

For x > 3, f(x) = 3x – 3.

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + (3x – 3) = 3 * 3 – 3 = 6.

For, x = 3, f(x) = 2x

f(3) = 2 * 3 = 6.

x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = f(3)

So, f(x) is continuous at x = 3.

 

(iv)

Solution:

For x < 1, f(x) = 2x + 1.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (2x + 1) = 2 *1 + 1 = 3.

For x > 1, f(x) = 3x.

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + 3x = 3 * 1 = 3.

For, x = 1, f(1) = 2.

x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) ≠ f(1)

So, f(x) is discontinuous at x = 1.

 

3

(i)

Solution:

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5 f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5 (x2 + 2) = 25 + 2  = 27.

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5+ f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5+(3x + 12) = 3.5 + 12 = 27.

Functional value = f(5) = 20.

Here, LHL = RHL ≠ f(5).

Therefore, given function is removable discontinuous at x = 5.

But, the given function can be made continuous by redefining as:

 

f(x) = $\{ \begin{array}{*{20}{c}}{{{\rm{x}}^2} + 2}&{{\rm{for\: x}} < 5}\\{27}&{{\rm{for\: x}} = 5}\\{3{\rm{x}} + 12}&{{\rm{for\: x}} > 5}\end{array}$

 

3

(ii)

Solution:

For x < 2, f(x) = 2x – 3.

LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 2 – (2x – 3) = 2 *2 – 3 = 1.

For x > 2, f(x) = 3x – 5.

RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (3x – 5) = 3 * 2 – 5 = 1.

f (2) = 2.

x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) ≠ f(2)

So, f(x) is discontinuous at x = 2.

So, the given function will be continuous if f(x) is redefined as follows:

f(x) = $\{ \begin{array}{*{20}{c}}{2{\rm{x}} - 3}&{{\rm{for\: x}} < 2}\\1&{{\rm{for\: x}} = 2}\\{3{\rm{x}} - 5}&{{\rm{for\: x}} > 2}\end{array}{\rm{\: \: }}$

4.

(i)

Solution:

For x < 2, f(x) = kx + 3.

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 (3x – 1) = 3.2 – 1 = 5.

Being continuous,

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x)

2k + 3 = 5.

So, k = 1.

 

 

 

(ii)

Solution:

For x > 3 and x < 3, f(x) = $\frac{{2{{\rm{x}}^2} - 19}}{{{\rm{x}} - 13}}$.

= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{2{{\rm{x}}^2} - 18}}{{{\rm{x}} - 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{2\left( {{\rm{x}} - 3} \right)\left( {{\rm{x}} + 3} \right)}}{{{\rm{x}} - 3}}$.

= 2(3 + 3) = 12.

For, x = 3, f(x) = k, i.e. f(3) = k.

Being continuous,

12 = k

So, k = 12.

 

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.