Exercise 16.4
1.
(i)
Solution:
f(x) = x2
Left hand limit at x = 4 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – x2 =
(4)2 = 16.
Right hand limit at x = 4 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + x2 =
(4)2 = 16.
f(4) = (4)2 = 16.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) =
f(4)
So, f(x) is continuous at x = 4.
(ii)
Solution:
f(x) = 2 – 3x2
Left hand limit at x = 0 is
=
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – (2 – 3x2)
= 2 – 0 = 2.
Right hand limit at x = 0 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + (2 – 3x2)
= 2 – 0 = 2.
f(0) = 2 – 3 * 0 = 2.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
0 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + f(x) =
f(0)
So, f(x) is continuous at x = 0.
(iii)
Solution:
f(x) = 3x2 – 2x + 4.
Left hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (3x2 –
2x + 4) = 3 * 1 – 2 * 1 + 4 = 5.
Right hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + (3x2 –
2x + 4) = 3 * 1 – 2 * 1 + 4 = 5.
f(1) = 3 * (1)2 – 2 * 1 + 4 = 5.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
1 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) =
f(1)
So, f(x) is continuous at x = 1.
(iv)
Solution:
f(x) = $\frac{1}{{2{\rm{x}}}}$.
f(0) = $\frac{1}{{2.0}}$ = $\frac{1}{0}$ = does not exist.
Hence, f(x) is discontinuous at x = 0.
(v)
Solution:
f(0) = $\frac{1}{{{\rm{x}} - 2}}$
Let x = a ≠ 2.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a –${\rm{\:
}}\frac{1}{{{\rm{x}} - 2}}$ = $\frac{1}{{{\rm{a}} - 2}}$
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a +
$\frac{1}{{{\rm{x}} - 2}}{\rm{\: }}$= $\frac{1}{{{\rm{a}} - 2}}$.
f(a) = $\frac{1}{{{\rm{a}} - 2}}$.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + f(x) =
f(a)
So, f(x) is continuous at x = a ≠ 2.
Note: since a ≠ 2, so a – 2 ≠ 0 and hence $\frac{1}{{{\rm{a}}
- 2}}$ is a finite number.
(vi)
f(x) = $\frac{1}{{3{\rm{x}}}}$
Let x = a ≠ 0.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a${\rm{\:
}}\frac{1}{{3{\rm{x}}}}$ = $\frac{1}{{3{\rm{a}}}}$
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a +
$\frac{1}{{3{\rm{x}}}}{\rm{\: }}$= $\frac{1}{{3{\rm{a}}}}$.
f(a) = $\frac{1}{{3{\rm{a}}}}$.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
a – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ a + f(x) =
f(a)
So,f(x) is continuous at x = a ≠ 0.
(vii)
Solution:
f(x) = $\frac{1}{{1 - {\rm{x}}}}$
f(1) = $\frac{1}{{1 - 1}}$ = $\frac{1}{0}$ which does
not exist.
So, f(x) is discontinuous at x = 3.
(ix)
Solution:
f(x) = $\frac{{{{\rm{x}}^2} - 9}}{{{\rm{x}} - 3}}$
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{{{\rm{x}}^2} -
9}}{{{\rm{x}} - 3}}$
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3
$\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 3} \right)}}{{{\rm{x}}
- 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 (x + 3) = 3
+ 3 = 6.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 $\frac{{{{\rm{x}}^2} -
9}}{{{\rm{x}} - 3}}$.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 –
$\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 3} \right)}}{{{\rm{x}}
- 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 (x + 3) = 3
+ 3 = 6.
f(3) = $\frac{{9 - 9}}{{3 - 3}}$ = $\frac{0}{0}$.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
3 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) ≠
f(3)
So, f(x) is continuous at x = 3.
Note: since a ≠ 2, so a – 2 ≠ 0 and hence
$\frac{1}{{{\rm{a}} - 2}}$ is a finite number.
(x)
Solution:
f(x) = $\frac{{{{\rm{x}}^2} - 16}}{{{\rm{x}} - 4}}$
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 $\frac{{{{\rm{x}}^2} -
16}}{{{\rm{x}} - 4}}$
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 –
$\frac{{\left( {{\rm{x}} + 4} \right)\left( {{\rm{x}} - 4} \right)}}{{{\rm{x}}
- 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 – (x + 4) =
4 + 4 = 8.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + $\frac{{\left(
{{\rm{x}} + 4} \right)\left( {{\rm{x}} - 4} \right)}}{{{\rm{x}} - 4}}$ = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 (x + 4) + 4 = 8.
f(x) = $\frac{{{{\left( 4 \right)}^2} - 16}}{{4 - 4}}$ =
$\frac{0}{0}$.
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
4 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 4 + f(x) ≠
f(0)
So, f(x) is discontinuous at x = 4.
Note: since a ≠ 2, so a – 2 ≠ 0 and hence
$\frac{1}{{{\rm{a}} - 2}}$ is a finite number.
2.
(i)
Solution:
For x ≤ 2, f(x) = 2 – x2.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2 – x2) =
2 – 4 = –2.
For x > 2, f(x) = x – 4
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (x – 4) = 2 – 4 = –2.
For, x = 2, f(x) = 2 – x2
f(2) = 2 – (2)2 = –2.
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = f(2)
So, f(x) is continuous at x = 2.
(ii)
Solution:
For x < 2, f(x) = 2x2 + 1.
LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2x2 +
1) = 2 *4 + 1 = 9.
For x > 2, f(x) = 4x + 1.
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (4x + 1) = 4 * 1 + 1
= 9.
For, x = 2, f(x) = 2x2 + 1.
f(2) = 2 * (2)2 + 1 = 9.
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = f(2)
So, f(x) is continuous at x = 2.
(iii)
Solution:
For x < 3, f(x) = 2x.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 – 2x = 2 *3 = 6.
For x > 3, f(x) = 3x – 3.
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
3 + (3x – 3) = 3 * 3 – 3 = 6.
For, x = 3, f(x) = 2x
f(3) = 2 * 3 = 6.
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3 + f(x) = f(3)
So, f(x) is continuous at x = 3.
(iv)
Solution:
For x < 1, f(x) = 2x + 1.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (2x + 1) = 2 *1 + 1 =
3.
For x > 1, f(x) = 3x.
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + 3x = 3 * 1 = 3.
For, x = 1, f(1) = 2.
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + f(x) ≠ f(1)
So, f(x) is discontinuous at x = 1.
3
(i)
Solution:
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5– f(x) =
x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5– (x2 +
2) = 25 + 2 = 27.
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5+ f(x) =
x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 5+(3x + 12)
= 3.5 + 12 = 27.
Functional value = f(5) = 20.
Here, LHL = RHL ≠ f(5).
Therefore, given function is removable discontinuous at x =
5.
But, the given function can be made continuous by redefining
as:
f(x) = $\{ \begin{array}{*{20}{c}}{{{\rm{x}}^2} +
2}&{{\rm{for\: x}} < 5}\\{27}&{{\rm{for\: x}} = 5}\\{3{\rm{x}} +
12}&{{\rm{for\: x}} > 5}\end{array}$
3
(ii)
Solution:
For x < 2, f(x) = 2x – 3.
LHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 2 – (2x – 3) = 2 *2
– 3 = 1.
For x > 2, f(x) = 3x – 5.
RHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (3x – 5)
= 3 * 2 – 5 = 1.
f (2) = 2.
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) ≠ f(2)
So, f(x) is discontinuous at x = 2.
So, the given function will be continuous if f(x) is
redefined as follows:
f(x) = $\{ \begin{array}{*{20}{c}}{2{\rm{x}} -
3}&{{\rm{for\: x}} < 2}\\1&{{\rm{for\: x}} = 2}\\{3{\rm{x}} -
5}&{{\rm{for\: x}} > 2}\end{array}{\rm{\: \: }}$
4.
(i)
Solution:
For x < 2, f(x) = kx + 3.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 (3x – 1) = 3.2
– 1 = 5.
Being continuous,
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x)
2k + 3 = 5.
So, k = 1.
(ii)
Solution:
For x > 3 and x < 3, f(x) = $\frac{{2{{\rm{x}}^2} -
19}}{{{\rm{x}} - 13}}$.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 3
$\frac{{2{{\rm{x}}^2} - 18}}{{{\rm{x}} - 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
3 $\frac{{2\left( {{\rm{x}} - 3} \right)\left( {{\rm{x}} + 3}
\right)}}{{{\rm{x}} - 3}}$.
= 2(3 + 3) = 12.
For, x = 3, f(x) = k, i.e. f(3) = k.
Being continuous,
12 = k
So, k = 12.