Derivatives Exercise: 15.1 Class 12 Basic Mathematics Solution [NEB UPDATED]

Syllabus: Conetnt to study

a) Find the derivatives by definition of:
  1. Inverse trigonometric Function
  2. Exponential Function
  3. logarithmic Functions
b) Establish the relationship between continuity and differentiability
Derivatives Exercise: 15.1 Class 12 Basic Mathematics Solution [NEB UPDATED]

Exercise 15.1

Find, From First principles, the derivatives of: (Ex 1-5)

1. (i) ${e^{\sqrt x }}$

f(x) = ${{\rm{e}}^{\sqrt {\rm{x}} }}$, f(x + h) = ${{\rm{e}}^{\sqrt {{\rm{x}} + {\rm{h}}} }}$.

f’(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{\sqrt {\rm{x}} }}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\sqrt {{\rm{x}} + {\rm{h}}} }} - {{\rm{e}}^{\sqrt {\rm{x}} }}}}{{\rm{h}}}$ ….(i)

Let $\sqrt {\rm{x}} $ = u and $\sqrt {{\rm{x}} + {\rm{h}}} $ = u + k.

So, that k = $\sqrt {{\rm{x}} + {\rm{h}}} $ - $\sqrt {\rm{x}} $.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{\sqrt {\rm{x}} }}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{{\rm{u}} + {\rm{k}}}} - {{\rm{e}}^{\rm{u}}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{\rm{u}}}\left( {{{\rm{e}}^{\rm{k}}} - 1} \right)}}{{\rm{h}}}$

= euh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\left( {\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}.\frac{{\rm{k}}}{{\rm{h}}}} \right)$ = eu$\left( {{\rm{k}} \to 0\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= eu.1 h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\sqrt {{\rm{x}} + {\rm{h}}} - \sqrt {\rm{x}} }}{{\rm{h}}}$.

= ${{\rm{e}}^{\sqrt {\rm{x}} }}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sqrt {{\rm{x}} + {\rm{h}}}  - \sqrt {\rm{x}} }}{{\rm{h}}}{\rm{*}}\frac{{\sqrt {{\rm{x}} + {\rm{h}}}  + \sqrt {\rm{x}} }}{{\sqrt {{\rm{x}} + {\rm{h}}}  + \sqrt {\rm{x}} }}$${\rm{\: }}$= ${{\rm{e}}^{\sqrt {\rm{x}} }}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{x}} + {\rm{h}} - {\rm{x}}}}{{{\rm{h}}\left( {\sqrt {{\rm{x}} + {\rm{h}}}  + \sqrt {\rm{x}} } \right)}}$ = ${{\rm{e}}^{\sqrt {\rm{x}} }}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{h}}}{{{\rm{h}}\left( {\sqrt {{\rm{x}} + {\rm{h}}}  + \sqrt {\rm{x}} } \right)}}$

= ${{\rm{e}}^{\sqrt {\rm{x}} }}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{1}{{\sqrt {{\rm{x}} + {\rm{h}}}  + \sqrt {\rm{x}} }}$ = ${{\rm{e}}^{\sqrt {\rm{x}} }}$$\frac{1}{{\sqrt {\rm{x}}  + \sqrt {\rm{x}} }}$ = $\frac{{{{\rm{e}}^{\sqrt {\rm{x}} }}}}{{2\sqrt {\rm{x}} }}$.

 

(ii) ${e^{\sin x}}$

f(x) = ${{\rm{e}}^{{\rm{sinx}}}}$, f(x + h) = ${{\rm{e}}^{{\rm{sin}}\left( {{\rm{x}} + {\rm{h}}} \right)}}$.

f’(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{{\rm{sinx}}}}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{{\rm{sin}}\left( {{\rm{x}} + {\rm{h}}} \right)}} - {{\rm{e}}^{{\rm{sinx}}}}}}{{\rm{h}}}$ ….(i)

Let sinx = u and sin(x + h) = u + k.

So, that k = sin(x + h) – sinx.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{{\rm{sinx}}}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{{\rm{u}} + {\rm{k}}}} - {{\rm{e}}^{\rm{u}}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{\rm{u}}}\left( {{{\rm{e}}^{\rm{k}}} - 1} \right)}}{{\rm{h}}}$

= euh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\left( {\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}.\frac{{\rm{k}}}{{\rm{h}}}} \right)$ = eu$\left( {{\rm{k}} \to 0\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= eu.1 h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{sinx}}}}{{\rm{h}}}$.

= ${{\rm{e}}^{{\rm{sinx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \frac{{{\rm{x}} + {\rm{h}} + {\rm{x}}}}{2}.\sin \frac{{{\rm{x}} + {\rm{h}} - {\rm{x}}}}{2}}}{{\rm{h}}}$.

${\rm{\: }}$= ${{\rm{e}}^{{\rm{sinx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)\sin \frac{{\rm{h}}}{2}}}{{\rm{h}}}$

= ${{\rm{e}}^{{\rm{sinx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $2\cos \left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)$.$\frac{{\sin \frac{{\rm{h}}}{2}}}{{\frac{{\rm{h}}}{2}}}.\frac{1}{2}$

 = ${{\rm{e}}^{{\rm{sinx}}}}$cosx.1 = ${{\rm{e}}^{{\rm{sinx}}}}$.cosx.

 

(iii) ${e^{\tan x}}$

f(x) = ${{\rm{e}}^{{\rm{tanx}}}}$, f(x + h) = ${{\rm{e}}^{{\rm{tan}}\left( {{\rm{x}} + {\rm{h}}} \right)}}$.

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{{\rm{tanx}}}}} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{{\rm{tan}}\left( {{\rm{x}} + {\rm{h}}} \right)}} - {{\rm{e}}^{{\rm{tanx}}}}}}{{\rm{h}}}$ ….(i)

Let tanx = u and tan(x + h) = u + k.

So, that k = tan(x + h) – tanx.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{e}}^{{\rm{tanx}}}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{{\rm{u}} + {\rm{k}}}} - {{\rm{e}}^{\rm{u}}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{\rm{u}}}\left( {{{\rm{e}}^{\rm{k}}} - 1} \right)}}{{\rm{h}}}$

= euh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\left( {\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}.\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= eu$\left( {{\rm{k}} \to 0\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= etanx.1 h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\tan \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{tanx}}}}{{\rm{h}}}$.

= ${{\rm{e}}^{{\rm{tanx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right)}}{{\cos \left( {{\rm{x}} + {\rm{h}}} \right)}} - \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}}}{{\rm{h}}}$.

= ${{\rm{e}}^{{\rm{tanx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}} - \cos \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{sinx}}}}{{{\rm{h}}.{\rm{cosx}}.{\rm{cos}}\left( {{\rm{x}} + {\rm{h}}} \right)}}$${\rm{\: }}$= ${{\rm{e}}^{{\rm{tanx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{sin}}\left( {{\rm{x}} + {\rm{h}} - {\rm{x}}} \right)}}{{{\rm{cosx}}.{\rm{cos}}\left( {{\rm{x}} + {\rm{h}}} \right)}}$

= ${{\rm{e}}^{{\rm{tanx}}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{1}{{{\rm{cosx}}.\cos \left( {{\rm{x}} + {\rm{h}}} \right)}}$.$\frac{{\sin {\rm{h}}}}{{\rm{h}}}$.

 = ${{\rm{e}}^{{\rm{tanx}}}}$.1.$\frac{1}{{{\rm{cosx}}.{\rm{cosx}}}}$.

= sec2x.etanx.

 

2. (i) $\log (\sin {\rm{ }}\frac{x}{a})$

Solution:

f(x) = log $\left( {\sin \frac{{\rm{x}}}{{\rm{a}}}} \right)$, f(x + h) = log.sin $\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{a}}}$.

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\log \left( {\sin \frac{{\rm{x}}}{{\rm{a}}}} \right)} \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log .{\rm{sin\: }}\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{a}}} - {\rm{log}}\sin \frac{{\rm{x}}}{{\rm{a}}}}}{{\rm{h}}}$ ….(i)

Let sin $\frac{{\rm{x}}}{{\rm{a}}}$ = u and sin $\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{a}}}$ = u + k, so that,

So, that k = sin $\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{a}}}$ – sin $\frac{{\rm{x}}}{{\rm{a}}}$.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\log \left( {\sin \frac{{\rm{x}}}{{\rm{a}}}} \right)} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{log}}.\left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{logu}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\log \left( {\frac{{{\rm{u}} + {\rm{k}}}}{{\rm{u}}}} \right)}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}.\frac{{\left( {\frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\rm{h}}}$ = k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}$. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{{\rm{h}}.{\rm{u}}}}$.

= $\frac{1}{{\rm{u}}}$.1. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\sin \frac{{{\rm{x}} + {\rm{h}}}}{{\rm{a}}} - \sin \frac{{\rm{x}}}{{\rm{a}}}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \frac{{2{\rm{x}} + {\rm{h}}}}{{2{\rm{a}}}}.\sin \frac{{\rm{h}}}{{2{\rm{a}}}}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 2.cos $\frac{{2{\rm{x}} + {\rm{h}}}}{{2{\rm{a}}}}$. $\frac{{\sin \frac{{\rm{h}}}{{2{\rm{a}}}}}}{{\frac{{\rm{h}}}{{2{\rm{a}}}}.2{\rm{a}}}}$ = $\frac{1}{{\rm{u}}}$. 2cos $\frac{{\rm{x}}}{{\rm{a}}}$. 1. $\frac{1}{{2{\rm{a}}}}$.

= $\frac{1}{{\rm{a}}}$. $\frac{1}{{\sin \frac{{\rm{x}}}{{\rm{a}}}}}$.cos $\frac{{\rm{x}}}{{\rm{a}}}$ = $\frac{1}{{\rm{a}}}$.cot $\frac{{\rm{x}}}{{\rm{a}}}$.

 

(ii) $\log (\tan x)$

Solution:

f(x) = log.tanx, f(x + h) = log.tan (x + h).

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.{\rm{tanx}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \tan \left( {{\rm{x}} + {\rm{h}}} \right) - \log {\rm{tanx}}}}{{\rm{h}}}$ ….(i)

Let tanx = u and tan (x + h) = u + k, so that,

So, that k = tan(x + h) – tanx.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.{\rm{tanx}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{log}}.\left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{logu}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{1}{{\rm{h}}}$.$\log \left( {\frac{{{\rm{u}} + {\rm{k}}}}{{\rm{u}}}} \right)$

= x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{1}{{\rm{h}}}$.log $\left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)$ = k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}$. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{{\rm{h}}.{\rm{u}}}}$.

= $\frac{1}{{\rm{u}}}$.1. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\tan \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{tanx}}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right)}}{{\cos \left( {{\rm{x}} + {\rm{h}}} \right)}} - \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}} - \cos \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{sinx}}}}{{{\rm{hcos}}\left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}}}}$

 = $\frac{1}{{\rm{u}}}$. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0  $\frac{{\sin \left( {{\rm{x}} + {\rm{h}} - {\rm{x}}} \right)}}{{{\rm{h}}.\cos \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}}}}$.

= $\frac{1}{{{\rm{tanx}}}}$ h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0  $\frac{{{\rm{sinh}}}}{{\rm{h}}}.\frac{1}{{\cos \left( {{\rm{x}} + {\rm{h}}} \right)}}.\frac{1}{{{\rm{cosx}}}}$

= $\frac{1}{{{\rm{tanx}}}}.1.{\rm{\: \: }}\frac{1}{{{\rm{cosx}}}}.{\rm{\: }}\frac{1}{{{\rm{cosx}}}}$

= $\frac{2}{{{\rm{sin}}2{\rm{x}}}}$ = 2cosec2x.

 

(iii) $\log (\sec {x^2})$

Solution:

f(x) = log.secx2, f(x + h) = log.sec(x + h)2.

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.{\rm{sec}}{{\rm{x}}^2}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \sec {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} - \log {\rm{sec}}{{\rm{x}}^2}}}{{\rm{h}}}$ ….(i)

Let secx2 = u and sec (x + h)2 = u + k, so that,

So, that k = sec (x + h)2 – secx2.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.{\rm{sec}}{{\rm{x}}^2}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{log}}.\left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{logu}}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}$.$\frac{{{\rm{ku}}}}{{\rm{h}}}$.

=k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}$.

h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{{\rm{h}}.{\rm{u}}}}$.

=1.$\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sec {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} - {\rm{sec}}{{\rm{x}}^2}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0  $\frac{{\frac{1}{{\cos {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}} - \frac{1}{{\cos {{\rm{x}}^2}}}}}{{\rm{h}}}$.

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{cos}}{{\rm{x}}^2} - \cos {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}}{{{\rm{hcos}}{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}.{\rm{cos}}{{\rm{x}}^2}}}$

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\sin \frac{{{{\rm{x}}^2} + {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}}{2}.\sin \frac{{{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} - {{\rm{x}}^2}}}{2}}}{{{\rm{h}}.{\rm{cos}}{{\rm{x}}^2}.\cos {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}}$

= $\frac{1}{{\rm{u}}}$h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\sin \left( {\frac{{2{{\rm{x}}^2} + 2{\rm{xh}} + {{\rm{h}}^2}}}{2}} \right).\sin \left( {\frac{{2{\rm{xh}} + {{\rm{h}}^2}}}{2}} \right)}}{{{\rm{h}}.{\rm{cos}}{{\rm{x}}^2}.\cos {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}}$

= $\frac{1}{{\rm{u}}}$ h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0  $\frac{{2\sin \left( {{{\rm{x}}^2} + {\rm{xh}} + \frac{{{{\rm{h}}^2}}}{2}} \right).\frac{{\sin \left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}{{{\rm{h}}\left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}.{\rm{h}}\left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}{{{\rm{h}}.{\rm{cos}}{{\rm{x}}^2}.\cos {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}}}$

= $\frac{1}{{\rm{u}}}.\frac{{2{{\sin }^2}{\rm{x}}.1.{\rm{x}}}}{{\cos {{\rm{x}}^2}.{\rm{cos}}{{\rm{x}}^2}}}$ = $\frac{1}{{{\rm{sec}}{{\rm{x}}^2}}}.\frac{{2{\rm{x}}.{\rm{sin}}{{\rm{x}}^2}}}{{{\rm{cos}}{{\rm{x}}^2}.{\rm{cos}}{{\rm{x}}^2}}}$ = 2xtanx2.

3. (i) ${{\mathop{\rm Cos}\nolimits} ^{ - 1}}x$

Solution:

f(x) = cos-1x, f(x + h) = cos-1(x + h).

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\cos }^{ - 1}}{\rm{x}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\cos }^{ - 1}}\left( {{\rm{x}} + {\rm{h}}} \right) - {{\cos }^{ - 1}}{\rm{x}}}}{{\rm{h}}}$ ….(i)

Let cos-1x = u and cos-1 (x + h) = u + k, so that,

So, that x = cos u and x + h = cos(u + k).

h = cos(u + k) – cosu.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\cos }^{ - 1}}{\rm{x}}} \right)$ = k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{u}} + {\rm{k}} - {\rm{u}}}}{{\cos \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{cosu}}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{ - 2\sin \frac{{{\rm{u}} + {\rm{k}} + {\rm{u}}}}{2}.\sin \frac{{\rm{k}}}{2}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\rm{k}}}{2}}}{{ - \sin \left( {{\rm{u}} + \frac{{\rm{k}}}{2}} \right).\sin \frac{{\rm{k}}}{2}}}$ = $ - \frac{1}{{{\rm{sinu}}}}$ = $ - \frac{1}{{\sqrt {1 - {{\cos }^2}{\rm{u}}} }}$ = $ - \frac{1}{{\sqrt {1 - {{\rm{x}}^2}} }}$.

 

(ii)${\tan ^{ - 1}}x$

Solution:

f(x) = tan-1x, f(x + h) = tan-1(x + h).

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\tan }^{ - 1}}{\rm{x}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\tan }^{ - 1}}\left( {{\rm{x}} + {\rm{h}}} \right) - {{\tan }^{ - 1}}{\rm{x}}}}{{\rm{h}}}$ ….(i)

Lettan-1x = u and tan-1 (x + h) = u + k, so that,

So, that x = tan u and x + h = tan(u + k).

h = tan(u + k) – tanu.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\tan }^{ - 1}}{\rm{x}}} \right)$ = k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{u}} + {\rm{k}} - {\rm{u}}}}{{\tan \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{tan}}.{\rm{u}}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{\frac{{\sin \left( {{\rm{u}} + {\rm{k}}} \right)}}{{\cos \left( {{\rm{u}} + {\rm{k}}} \right)}} - \frac{{{\rm{sinu}}}}{{{\rm{cosu}}}}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{k}}.{\rm{cosu}}.{\rm{cos}}\left( {{\rm{u}} + {\rm{k}}} \right)}}{{\sin \left( {{\rm{u}} + {\rm{k}}} \right).{\rm{cosu}} - \cos \left( {{\rm{u}} + {\rm{k}}} \right).{\rm{sinu}}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{k}}.{\rm{cosu}}.{\rm{cos}}\left( {{\rm{u}} + {\rm{k}}} \right)}}{{{\rm{sin}}\left( {{\rm{u}} + {\rm{k}} - {\rm{u}}} \right)}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{k}}.{\rm{cosu}}.{\rm{cos}}\left( {{\rm{u}} + {\rm{k}}} \right)}}{{{\rm{sink}}}}$

= cosu.cosu = cos2u

= $\frac{1}{{{{\sec }^2}{\rm{u}}}} = \frac{1}{{1 + {{\tan }^2}{\rm{u}}}} = \frac{1}{{1 + {{\rm{x}}^2}}}$.

 

(iii) $\log ({{\mathop{\rm Cos}\nolimits} ^{ - 1}}x)$

Solution:

f(x) = log(cos-1x), f(x + h) = log(cos-1(x + h)).

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\log .{{\cos }^{ - 1}}{\rm{x}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log .{{\cos }^{ - 1}}\left( {{\rm{x}} + {\rm{h}}} \right) - \log .{{\cos }^{ - 1}}{\rm{x}}}}{{\rm{h}}}$ ….(i)

Let cos-1x = u and cos-1 (x + h) = u + k, so that,

So, that x = cos u and x + h = cos(u + k).

h = cos(u + k) – cosu.

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.{{\cos }^{ - 1}}{\rm{x}}} \right)$ = k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{\log \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{logu}}}}{{\rm{h}}}$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\log \left( {1 + \frac{{\rm{k}}}{{\rm{u}}}} \right)}}{{\frac{{\rm{k}}}{{\rm{u}}}}}$. k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\rm{k}}}{{\rm{u}}}}}{{\rm{h}}}$.

= 1.k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{\cos \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{cosu}}}}$

= $\frac{1}{{\rm{u}}}$. k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{2\sin \frac{{{\rm{u}} + {\rm{k}} + {\rm{u}}}}{2}.\sin \frac{{{\rm{u}} - {\rm{u}} - {\rm{k}}}}{2}}}$

= $\frac{1}{{\rm{u}}}$. k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\rm{k}}}{{ - 2\sin \left( {{\rm{u}} + \frac{{\rm{k}}}{2}} \right).\sin \frac{{\rm{k}}}{2}}}$

= $\frac{1}{{\rm{u}}}$. k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\rm{k}}}{2}}}{{\sin \left( {{\rm{u}} + \frac{{\rm{k}}}{2}} \right).\sin \frac{{\rm{k}}}{2}}}$  = $ - \frac{1}{{\rm{u}}}.\frac{1}{{{\rm{sinu}}}}$

= $ - \frac{1}{{{{\cos }^{ - 1}}{\rm{x}}}}.\frac{1}{{\sqrt {1 - {{\cos }^2}{\rm{u}}} }}$ = $ - \frac{1}{{{{\cos }^{ - 1}}{\rm{x}}}}.\frac{1}{{\sqrt {1 - {{\rm{x}}^2}} }}$.

= $ - \frac{1}{{{{\cos }^{ - 1}}{\rm{x}}\sqrt {1 - {{\rm{x}}^2}} }}$.

4. (i) ${x^x}$

Solution:

f(x) = xx = ${{\rm{e}}^{\log {{\rm{x}}^{\rm{x}}}}}$ = ex.logx, f(x + h) = ${{\rm{e}}^{\left( {{\rm{x}} + {\rm{h}}} \right)\left( {\log \left( {{\rm{x}} + {\rm{h}}} \right)} \right)}}$

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{x}}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\left( {{\rm{x}} + {\rm{h}}} \right).\log \left( {{\rm{x}} + {\rm{h}}} \right)}} - {{\rm{e}}^{{\rm{x}}.{\rm{logx}}}}}}{{\rm{h}}}$ ….(i)

Let x.logx = u and (x + h).log(x + h) = u + k, so that,

So, that k = (x + h).log(x + h) – x.logx

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{x}}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{{\rm{u}} + {\rm{k}}}} - {{\rm{e}}^{\rm{u}}}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\rm{u}}}\left( {{{\rm{e}}^{\rm{k}}} - 1} \right)}}{{\rm{h}}}$.

= eu. h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}.\frac{{\rm{k}}}{{\rm{h}}}$

=eu$\left({{\rm{k\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= eu.1. h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\left( {{\rm{x}} + {\rm{h}}} \right)\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{x}}.{\rm{logx}}}}{{\rm{h}}}$

= elogx. h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{x}}.\log \left( {{\rm{x}} + {\rm{h}}} \right) + {\rm{hlog}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{xlogx}}}}{{\rm{h}}}$

= xxh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{x}}\left\{ {\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{logx}}} \right\} + {\rm{h}}.\log \left( {{\rm{x}} + {\rm{h}}} \right)}}{{\rm{h}}}$

= xxh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\left\{ {\frac{{\rm{x}}}{{\rm{h}}}.\log \left( {\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{x}}}} \right) + \log \left( {{\rm{x}} + {\rm{h}}} \right)} \right\}$.

= xxh $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\left\{ {\frac{{\log \left( {1 + \frac{{\rm{h}}}{{\rm{x}}}} \right)}}{{\frac{{\rm{h}}}{{\rm{x}}}}} + \log \left( {{\rm{x}} + {\rm{h}}} \right)} \right\}$ = xx (1 + logx)

 

(ii) ${2^{{x^2}}}$

Solution:

f(x) = ${2^{\rm{x}}}^2$ = ${{\rm{e}}^{\log {2^{\rm{x}}}^2}}$ = ${{\rm{e}}^{{{\rm{x}}^2}{\rm{log}}2}}$ ,f(x + h) = ${{\rm{e}}^{{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}{\rm{log}}2}}$

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{x}}}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2}.\log 2}} - {{\rm{e}}^{{{\rm{x}}^2}.{\rm{log}}2}}}}{{\rm{h}}}$ ….(i)

Let x2.log2 = u and (x + h)2.log2 = u + k, so that,

So, that k = (x + h)2.log2 – x2.log2.

= log2{x2 + 2xh + h2 – x2} = log2h(2x + h)

When h → 0, k → 0. Then (i) becomes

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{2^{\rm{x}}}^2} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{{\rm{e}}^{{\rm{u}} + {\rm{k}}}} - {{\rm{e}}^{\rm{u}}}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\rm{u}}}\left( {{{\rm{e}}^{\rm{k}}} - 1} \right)}}{{\rm{h}}}$.

= eu. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}.\frac{{\rm{k}}}{{\rm{h}}}$

= eu$\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0{\rm{\: }}\frac{{{{\rm{e}}^{\rm{k}}} - 1}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= eu.1. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{log}}2{\rm{h}}\left( {2{\rm{x}} + {\rm{h}}} \right)}}{{\rm{h}}}$ = eu.log2.2x

= ${{\rm{e}}^{{{\rm{x}}^2}.{\rm{log}}2}}$.log.2.2x = 2xlog2.${2^{\rm{x}}}^2$.${\rm{\: }}$

 

(iii) $\log ({x^x})$

Solution:

f(x) = log xx = x.logx , f(x + h) = (x + h)log(x + h).

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log\: }}{{\rm{x}}^{\rm{x}}}{\rm{\: }}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\left( {{\rm{x}} + {\rm{h}}} \right)\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{xlogx}}}}{{\rm{h}}}$ ….(i)

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{x}}.\log \left( {{\rm{x}} + {\rm{h}}} \right) + {\rm{h}}.\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{x}}.{\rm{logx}}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{x}}\left\{ {\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{logx}}} \right\} + {\rm{h}}.\log \left( {{\rm{x}} + {\rm{h}}} \right)}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\left\{ {\frac{{\rm{x}}}{{\rm{h}}}\log \left( {\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{x}}}} \right) + \log \left( {{\rm{x}} + {\rm{h}}} \right)} \right\}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\left\{ {\frac{{\log \left( {1 + \frac{{\rm{h}}}{{\rm{x}}}} \right)}}{{\frac{{\rm{h}}}{{\rm{x}}}}} + \log \left( {{\rm{x}} + {\rm{h}}} \right)} \right\}$ = 1 + logx.

5. (i) Sin x2

Solution:

f(x) = sin x2 = x.logx , f(x + h) = sin(x + h)2.

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{sin\: }}{{\rm{x}}^2}} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin {{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} - {\rm{sin}}{{\rm{x}}^2}}}{{\rm{h}}}$ ….(i)

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \frac{{{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} + {{\rm{x}}^2}}}{2}.\sin \frac{{{{\left( {{\rm{x}} + {\rm{h}}} \right)}^2} - {{\rm{x}}^2}}}{2}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \frac{{2{{\rm{x}}^2} + 2{\rm{xh}} + {{\rm{h}}^2}}}{2}.\sin \frac{{2{\rm{xh}} + {{\rm{h}}^2}}}{2}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \left( {{{\rm{x}}^2} + {\rm{xh}} + \frac{{{{\rm{h}}^2}}}{2}} \right).\sin {\rm{h}}\left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 2cos $\left( {{{\rm{x}}^2} + {\rm{xh}} + \frac{{{{\rm{h}}^2}}}{2}} \right)$. $\frac{{\sin \left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}{{{\rm{h}}\left( {{\rm{x}} + \frac{{\rm{h}}}{2}} \right)}}$(x + $\frac{{\rm{h}}}{2}$)

= 2.cosx2.1.x = 2x.cosx2.

 

(ii) Sin (log x)

Solution:

f(x) = sin(logx) = x.logx , f(x + h) = sin(log(x + h))

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sin \left( {{\rm{logx}}} \right)} \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {\log \left( {{\rm{x}} + {\rm{h}}} \right)} \right)---{\rm{sin}}\left( {{\rm{logx}}} \right)}}{{\rm{h}}}$ ….(i)

Put logx = u and log(x + h) = u + k , so that,

k = log(x + h) – logx

When h → 0, k → 0, Then (i) becomes.

Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sin \left( {{\rm{logx}}} \right)} \right)$= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{sinu}}}}{{\rm{h}}}$.

= $\left( {{\rm{k\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\sin \left( {{\rm{u}} + {\rm{k}}} \right) - {\rm{sinu}}}}{{\rm{k}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{\rm{k}}}{{\rm{h}}}} \right)$

= k $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \frac{{{\rm{u}} + {\rm{k}} + {\rm{u}}}}{2}.\sin \frac{{{\rm{u}} + {\rm{k}} - {\rm{u}}}}{2}}}{{\rm{k}}}$ * ${\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0$$\frac{{\log \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{logx}}}}{{\rm{h}}}$.

= k$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{2\cos \left( {{\rm{u}} + \frac{{\rm{k}}}{2}} \right).\sin \frac{{\rm{k}}}{2}}}{{\frac{{\rm{k}}}{2}.2}}$. ${\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0$$\frac{{\log \left( {\frac{{{\rm{x}} + {\rm{h}}}}{{\rm{x}}}} \right)}}{{\rm{h}}}$

= cosu.1. ${\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0$$\frac{{\log \left( {1 + \frac{{\rm{h}}}{{\rm{x}}}} \right)}}{{\frac{{\rm{h}}}{{\rm{x}}}.{\rm{x}}}}$ = cosu.1.$\frac{1}{{\rm{x}}}$ = $\frac{1}{{\rm{x}}}$.cos(logx).

 

(iii) $\sqrt {\tan x} $
Solution:

f(x) = $\sqrt {{\rm{tanx}}} $ = x.logx , f(x + h) = $\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)} $.

f’(x) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0$\frac{{{\rm{f}}\left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{f}}\left( {\rm{x}} \right)}}{{\rm{h}}}$

or, $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sqrt {{\rm{tanx}}} } \right)$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sqrt {{\rm{tan}}\left( {{\rm{x}} + {\rm{h}}} \right)} ---\sqrt {{\rm{tanx}}} }}{{\rm{h}}}$ ….(i)

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  - \sqrt {{\rm{tanx}}} }}{{\rm{h}}}.\frac{{\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} }}{{\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} }}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\tan \left( {{\rm{x}} + {\rm{h}}} \right) - {\rm{tanx}}}}{{\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} }}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right)}}{{\cos \left( {{\rm{x}} + {\rm{h}}} \right)}} - \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}}}{{{\rm{h}}\left( {\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} } \right)}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}} - \cos \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{sinx}}}}{{{\rm{h}}.\cos \left( {{\rm{x}} + {\rm{h}}} \right).\cos \left( {\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} } \right)}}$.

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\sin \left( {{\rm{x}} + {\rm{h}} - {\rm{x}}} \right)}}{{{\rm{h}}.\cos \left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}}\left( {\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx}}} } \right)}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{sinh}}}}{{{\rm{hcos}}\left( {{\rm{x}} + {\rm{h}}} \right).{\rm{cosx}}\left( {\sqrt {\tan \left( {{\rm{x}} + {\rm{h}}} \right)}  + \sqrt {{\rm{tanx\: }}} } \right)}}$.

= $\frac{1}{{{\rm{cosx}}.{\rm{cosx}}\left( {\sqrt {{\rm{tan\: x}}}  + \sqrt {{\rm{tanx}}} } \right)}}$ = $\frac{{{{\sec }^2}{\rm{x}}}}{{2\sqrt {{\rm{tanx}}} }}$.

6. Find, from first principles, the derivatives of:

 (i) f(x) = ecosx at x=0

Solution:

f(x) = ecosx

f’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 + {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{\cos \left( {0 + {\rm{h}}} \right)}} - {{\rm{e}}^{{\rm{cos}}0}}}}{{\rm{h}}}$.

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{e}}^{{\rm{cosh}}}} - {\rm{e}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{e}}\left( {{{\rm{e}}^{{\rm{cosh}} - 1}} - 1} \right)}}{{\rm{h}}}$ …(i).

Put cosh – 1 = u. When h → 0, u → 0.

Then (i) becomes,

Or, f’(0) = u $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{e}}\left({{{\rm{e}}^{\rm{u}}} - 1} \right)}}{{\rm{h}}}$ = u $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 ${\rm{e}}.\frac{{{{\rm{e}}^{\rm{u}}} - 1}}{{\rm{u}}}.\frac{{\rm{u}}}{{\rm{h}}}$.

= e $\left( {{\rm{u\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}{\rm{\: }}0\frac{{{{\rm{e}}^{\rm{u}}} - 1}}{{\rm{u}}}} \right)\left( {{\rm{h\: }}\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}{\rm{\: }}0\frac{{\rm{u}}}{{\rm{h}}}} \right)$ = e.1. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 $\frac{{{\rm{cosh}} - 1}}{{\rm{h}}}$.

= e. h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{ - 2{{\sin }^2}\frac{{\rm{h}}}{2}}}{{\rm{h}}}$ = -2e h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 ${\left( {\frac{{\sin \frac{{\rm{h}}}{2}}}{{\frac{{\rm{h}}}{2}}}} \right)^2}.\frac{{\rm{h}}}{4}$ = 0.

 

(ii) f(x) = log.cosx at x=0

Solution:

f(x) = log.cosx

f’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 + {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{log}}.{\rm{cosh}} - 0}}{{\rm{h}}}$.

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{log}}.{\rm{cosh}}}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{log}}(1 - 2{{\sin }^2}\frac{{2{\rm{h}}}}{2}){\rm{\: }}}}{{\rm{h}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{1}{{\rm{h}}}$$\left\{ { - 2{{\sin }^2}\frac{{\rm{h}}}{2} - {{\left( {2{{\sin }^2}\frac{{\rm{h}}}{2}} \right)}^2} -  \ldots } \right\}$ = 0.

7. (i) $if\;{\rm{ f(x) = }}\left\{ {\begin{array}{*{20}{c}}{{x^2}\cos \frac{1}{x}{\rm{ for x}} \ne {\rm{0}}}\\{0{\rm{ \;for \;x = 0}}}\end{array}} \right..{\rm{ Find\; f'(0)}}$

Solution:

Rf’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 + {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\rm{h}}^2}\cos \frac{1}{{\rm{h}}} - 0}}{{\rm{h}}}$.

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 h.cos $\frac{1}{{\rm{h}}}$ = 0.

Lf’ (0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 - {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{ - {\rm{h}}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{{\left( { - {\rm{h}}} \right)}^2}.\cos \left( { - \frac{1}{{\rm{h}}}} \right) - 0}}{{ - {\rm{h}}}}$

= h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $ - {\rm{h}}.\cos \frac{1}{{\rm{h}}}$ = 0

LF’(0) = Rf’(0)

So, f(0) exists and is equal to 0.

(ii) $If\;{\rm{ f(x) = }}\left\{ {\begin{array}{*{20}{c}}{3x + 2{\rm{ \;for\;  - }}\frac{3}{2} \le x \le 0}\\{3x - 2{\rm{ \;for \;0 < x < }}\frac{3}{2}}\end{array}} \right.$

Show that f(x) is continuous at x=0, but f’(0) does not exist.

Solution

Or, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – (3 + 2x) = 3.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + (3 – 2x) = 3.

When x = 0, f(0) = 3 + 2 * 0 = 3.

x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 + f(x) = f(0), so f(x) is continuous at x = 0.

Lf’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 - {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{ - {\rm{h}}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{3 + 2\left( { - {\rm{h}}} \right) - 3}}{{ - {\rm{h}}}}$ = 2.

Rf’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 + {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{3 - 2{\rm{h}} - 3}}{{\rm{h}}}$ = -2.

So, Lf’(0) ≠ Rf’(0)

So, f’(0) does not exist.

 

(iii) If f(x) =|x|, show that f’(0) does not exist.

Solution

f(x) = |x|;f(x) = x if x > 0, f(x) = - x if x < 0.

Lf’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 - {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{ - {\rm{h}}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 $\frac{{--\left( { - {\rm{h}}} \right) - 0}}{{ - {\rm{h}}}}$ = -1.

Rf’(0) = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{f}}\left( {0 + {\rm{h}}} \right) - {\rm{f}}\left( 0 \right)}}{{\rm{h}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{{\rm{h}} - 0}}{{\rm{h}}}$ = 1.

So, Lf’(0) ≠ Rf’(0)

So, f’(0) does not exist.

8) i. y = $\frac{{{\rm{x}}\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{2} - \frac{{{{\rm{a}}^2}}}{2}\log \left( {{\rm{x}} + \sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)$

Solution:

y = $\frac{{{\rm{x}}\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{2} - \frac{{{{\rm{a}}^2}}}{2}\log \left( {{\rm{x}} + \sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)$

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{1.\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{2}$ + x. $\frac{1}{{2\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}.\frac{{2{\rm{x}}}}{2}$ – $\frac{{{{\rm{a}}^2}\left( {1 + \frac{1}{{2\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}.2{\rm{x}}} \right)}}{{2\left( {{\rm{x}}\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)}}$

= $\frac{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{2} + \frac{{{{\rm{x}}^2}}}{{2\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }} - \frac{{{{\rm{a}}^2}}}{2}\frac{{\left( {\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}}  + {\rm{x}}} \right)}}{{\left( {{\rm{x}} + \sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)\left( {\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)}}{\rm{\: }}$

= $\frac{1}{2}$$\left( {\frac{{{{\rm{x}}^2} - {{\rm{a}}^2} + {{\rm{x}}^2} - {{\rm{a}}^2}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}} \right)$ = $\frac{1}{2}.\frac{{2{{\rm{x}}^2} - 2{{\rm{a}}^2}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$.

= $\frac{{{{\rm{x}}^2} - {{\rm{a}}^2}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$ = $\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} $.

(ii)$y = \frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\frac{x}{a}$

Solution:

$\begin{array}{l}\frac{d}{{dx}}\left[ {\frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{{\sin }^{ - 1}}\frac{x}{a}} \right]\\ = \frac{d}{{dx}}\left[ {\frac{{x\sqrt {{a^2} - {x^2}} }}{2}} \right] + \frac{d}{{dx}}\left[ {\frac{{{a^2}}}{2}{{\sin }^{ - 1}}\frac{x}{a}} \right]\\ = \frac{x}{2}\frac{d}{{dx}}\left[ {\sqrt {{a^2} - {x^2}} } \right] + \left[ {\sqrt {{a^2} - {x^2}} } \right]\frac{d}{{dx}}\frac{x}{2} + \frac{{{a^2}}}{2}\frac{d}{{dx}}{\sin ^{ - 1}}\frac{x}{a}\\ = \frac{x}{2}\frac{d}{{dx}}\left[ {\sqrt {{a^2} - {x^2}} } \right] + \left[ {\sqrt {{a^2} - {x^2}} } \right]\frac{d}{{dx}}\frac{x}{2} + \frac{{{a^2}}}{2}.\frac{1}{{\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} }}.\frac{1}{a}\\ =  - \frac{{{x^2}}}{2}.\frac{1}{{\sqrt {{a^2} - {x^2}} }} + \frac{1}{2}\sqrt {{a^2} - {x^2}}  + \frac{{{a^2}}}{{2\sqrt {{a^2} - {x^2}} }}\\ = \frac{1}{{2\sqrt {{a^2} - {x^2}} }}({a^2} - {x^2}) + \frac{1}{2}\sqrt {{a^2} - {x^2}} \\ = \frac{{\sqrt {{a^2} - {x^2}} }}{2} + \frac{1}{2}\sqrt {{a^2}{x^2}} \\ = \sqrt {{a^2} - {x^2}} \end{array}$

(iii) y = 2tan-1$\frac{{\sqrt {1 + {{\rm{x}}^2}}  - 1}}{{\rm{x}}}$

Solution:

y = 2tan-1$\frac{{\sqrt {1 + {{\rm{x}}^2}}  - 1}}{{\rm{x}}}$

= 2tan-1$\left( {\frac{{\sin \theta  - 1}}{{{\rm{tan}}\theta }}} \right)$      [x = tanθ]

= 2tan-1. $\left( {\frac{{1 - {\rm{cos}}\theta }}{{{\rm{sin}}\theta }}} \right)$ = 2tan-1. Tan $\frac{\theta }{2}$ = 2.$\frac{\theta }{2}$ = θ.

So, y = tan-1x  [x = tanθ]

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{1 + {{\rm{x}}^2}}}$.

 

9) i. If xy = ex – y, prove that $\frac{{dy}}{{dx}}$ =  (log x) (log(ex)-2

Solution

xy = ex – y

or, log xy = log ex – y,

So, y.logx = x – y [log e = 1]

Or, y(logx + 1) = x

So, y = $\frac{{\rm{x}}}{{1 + {\rm{logx}}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\left( {1 + {\rm{logx}}} \right).1 - {\rm{x}}.\left( {0 + \frac{1}{{\rm{x}}}} \right)}}{{{{\left( {1 + {\rm{logx}}} \right)}^2}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{logx}}}}{{{{\left( {1 + {\rm{logx}}} \right)}^2}}}$ = $\frac{{{\rm{logx}}}}{{{{\left( {{\rm{loge}} + {\rm{logx}}} \right)}^2}}}$ = $\frac{{{\rm{logx}}}}{{{{\left( {{\rm{logex}}} \right)}^2}}}$.

= logx.(log ex)-2.

 

(ii) If sin y = x sin (a+y), prove that $\frac{{dy}}{{dx}}$ = $\frac{{{{{\mathop{\rm Sin}\nolimits} }^2}(a + y)}}{{\sin a}}$

Solution

Siny = x.sin(a + y) …(i)

Or, cosy. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 1.sin(a + y) + x.cosx(a + y). $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\sin \left( {{\rm{a}} + {\rm{y}}} \right)}}{{{\rm{cosy}} - {\rm{x}}.\cos \left( {{\rm{a}} + {\rm{y}}} \right)}}$

= $\frac{{\sin \left( {{\rm{a}} + {\rm{y}}} \right)}}{{{\rm{cosy}} - \frac{{{\rm{siny}}}}{{\sin \left( {{\rm{a}} + {\rm{y}}} \right)}}.\cos \left( {{\rm{a}} + {\rm{y}}} \right)}}$   [from (i)]

= $\frac{{{{\sin }^2}\left( {{\rm{a}} + {\rm{y}}} \right)}}{{\sin \left( {{\rm{a}} + {\rm{y}}} \right).{\rm{cosy}} - {\rm{siny}}.\cos \left( {{\rm{a}} + {\rm{y}}} \right)}}$ = $\frac{{{{\sin }^2}\left( {{\rm{a}} + {\rm{y}}} \right)}}{{\sin \left( {{\rm{a}} + {\rm{y}} - {\rm{y}}} \right)}}$ = $\frac{{{{\sin }^2}\left( {{\rm{a}} + {\rm{y}}} \right)}}{{{\rm{sina}}}}$.

 

10) a. xsinx

Solution

Let y = xsinx.

So, logy = logxsinx = sinx.logx

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = sinx.$\frac{1}{{\rm{x}}}$ + logx.cosx

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = xsinx$\left( {\frac{{{\rm{sinx}}}}{{\rm{x}}} + {\rm{cosx}}.{\rm{logx}}} \right)$.

 

b. (sinx)x

Solution:

y = (sinx)x

So, logy = log(sinx)x = x.log(sinx)

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 1.log(sinx) + x.$\frac{1}{{\sin x}}$.cosx

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = (sinx)x(log.sinx + x.cotx).

 

c. (sinx)logx

Solution:

y = (sinx)logx

So, logy = log(sinx)logx = logx.log(sinx)

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = logx.$\frac{1}{{{\rm{sinx}}}}$.cosx + $\frac{1}{{\rm{x}}}$.log(sinx)

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = (sinx)logx$\left( {{\rm{cotx}}.{\rm{logx}} + \frac{1}{{\rm{x}}}.{\rm{logsinx}}} \right)$.

 

d. ${{\rm{e}}^{{{\rm{x}}^{\rm{x}}}}}$

Solution:

y = ${{\rm{e}}^{{{\rm{x}}^{\rm{x}}}}}$

So, y = et.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = et.

Where, t = xx.

Or, logt = x.logx

So, $\frac{1}{{\rm{t}}}$.$\frac{{{\rm{dt}}}}{{{\rm{dx}}}}$ = x.$\frac{1}{{\rm{x}}}$ + 1.logx

So, $\frac{{{\rm{dt}}}}{{{\rm{dx}}}}$ = xx(1 + logx).

We have, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}.\frac{{{\rm{dt}}}}{{{\rm{dx}}}}$ = et.xx(1 + logx) = ${{\rm{e}}^{{{\rm{x}}^{\rm{x}}}}}$.xx(1 + logx).

 

e. ${{\rm{x}}^{{{\rm{e}}^{\rm{x}}}}}$

Solution:

y = ${{\rm{x}}^{{{\rm{e}}^{\rm{x}}}}}$

So, logy = ${\rm{log}}{{\rm{x}}^{{{\rm{e}}^{\rm{x}}}}}$= ex.logx.

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = ex.$\frac{1}{{\rm{x}}}$ + ex.logx

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = ${{\rm{x}}^{{{\rm{e}}^{\rm{x}}}}}\left( {\frac{{{{\rm{e}}^{\rm{x}}}}}{{\rm{x}}} + {{\rm{e}}^{\rm{x}}}{\rm{logx}}} \right)$ = ${{\rm{x}}^{{{\rm{e}}^{\rm{x}}}}}$.ex.$\left( {{\rm{logx}} + \frac{1}{{\rm{x}}}} \right)$.

 

f. (logx)tanx

Solution:

y = (logx)tanx

So, logy = log(logx)tanx = tanx.log(logx)

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = sec2x.log(logx) + tanx.$\frac{1}{{{\rm{logx}}}}.\frac{1}{{\rm{x}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = (log)tanx$\left( {{{\sec }^2}{\rm{x}}.\log \left( {{\rm{logx}}} \right) + \frac{{{\rm{tanx}}}}{{{\rm{x}}.{\rm{logx}}}}} \right)$.

 

g. xsecx

Solution

y = xsecx

So, logy = logxsecx = secx.logx

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = secx.tanx + secx.$\frac{1}{{\rm{x}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = xsecx$\left( {{\rm{secx}}.{\rm{tanx}}.{\rm{logx}} + \frac{{{\rm{secx}}}}{{\rm{x}}}} \right)$.

 

h. (sinx)cosx

Solution:

y = (sinx)cosx

So, logy = logx(sinx)cosx = cosx.log(sinx)

So, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = -sinx.log(sinx) = cosx.$\frac{1}{{{\rm{sinx}}}}$.cosx

= (sinx)cosx(cosx.cotx – sinx.logsinx).

 

11) a. xx.yx=1

Solution:

xy.yx = 1.

Or, log(xy.yx) = log 1.

Or, log xy + log yx = 0

So, y.logx + x.logy = 0

Or, y. $\frac{1}{{\rm{x}}}$ + $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.logx + 1.logy + x.$\frac{1}{{\rm{y}}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{ - \frac{{\rm{y}}}{{\rm{x}}} - {\rm{logy}}}}{{{\rm{logx}} + \frac{{\rm{x}}}{{\rm{y}}}}}$ = $ - \frac{{\rm{y}}}{{\rm{x}}}\left( {\frac{{{\rm{y}} + {\rm{xlogy}}}}{{{\rm{x}} + {\rm{ylogx}}}}} \right)$.

 

b. xm.yn=(x+y)m+n

Solution:

or, xm.yn = (x + y)m + n …(I)

or, xm.nyn – 1. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + mxm – 1.yn = (m + n)(x + y)m + n – 1.$\left( {1 + \frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right){\rm{\: }}.$

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\left( {{\rm{m}} + {\rm{n}}} \right).{{\left( {{\rm{x}} + {\rm{y}}} \right)}^{{\rm{m}} + {\rm{n}} - 1}} - {\rm{m}}{{\rm{x}}^{{\rm{m}} - 1}}.{{\rm{y}}^{\rm{n}}}}}{{{\rm{n}}{{\rm{x}}^{\rm{m}}}{{\rm{y}}^{{\rm{n}} - 1}} - \left( {{\rm{m}} + {\rm{n}}} \right){{\left( {{\rm{x}} + {\rm{y}}} \right)}^{{\rm{m}} + {\rm{n}} - 1}}}}$

= $\frac{{\left( {{\rm{m}} + {\rm{n}}} \right).{{\left( {{\rm{x}} + {\rm{y}}} \right)}^{{\rm{m}} + {\rm{n}}}} - {\rm{m}}{{\rm{x}}^{{\rm{m}} - 1}}.{{\rm{y}}^{\rm{n}}}\left( {{\rm{x}} + {\rm{y}}} \right)}}{{{\rm{n}}{{\rm{x}}^{\rm{m}}}{{\rm{y}}^{{\rm{n}} - 1\left( {{\rm{x}} + {\rm{y}}} \right)}} - \left( {{\rm{m}} + {\rm{n}}} \right){{\left( {{\rm{x}} + {\rm{y}}} \right)}^{{\rm{m}} + {\rm{n}}}}}}$     [multiplying by (x+y)]

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\left( {{\rm{m}} + {\rm{n}}} \right).{{\rm{x}}^{\rm{m}}}{{\rm{y}}^{\rm{n}}} - {\rm{m}}{{\rm{x}}^{{\rm{m}} - 1}}.{{\rm{y}}^{\rm{n}}}\left( {{\rm{x}} + {\rm{y}}} \right)}}{{{{\rm{x}}^{\rm{m}}}{{\rm{y}}^{{\rm{n}} - 1}}\left\{ {{\rm{n}}\left( {{\rm{x}} + {\rm{y}}} \right) - \left( {{\rm{m}} + {\rm{n}}} \right){\rm{y}}} \right\}}}$

= $\frac{{\rm{y}}}{{\rm{x}}}$$\left( {\frac{{{\rm{mx}} + {\rm{nx}} - {\rm{mx}} - {\rm{my}}}}{{{\rm{nx}} + {\rm{ny}} - {\rm{my}} - {\rm{ny}}}}} \right)$ = $\frac{{\rm{y}}}{{\rm{x}}}$.

 

c. esinx + esiny = 1

Solution:

esinx + esiny = 1

Or, esinx.cosx + esiny.coy $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 0 [on diff]

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{ - {{\rm{e}}^{{\rm{sinx}}}}.{\rm{cosx}}}}{{{{\rm{e}}^{{\rm{siny}}}}.{\rm{cosy}}}}$.

 

d) xy = yx

Solution:

or, xy = yx

or, log xy = log yx   [taking log on both sides]

or, y.logx = x.logy

or, y.$\frac{1}{{\rm{x}}}$ + logx. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = x.$\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + 1.logy   [on differ.]

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\log {\rm{y}} - \frac{{\rm{y}}}{{\rm{x}}}}}{{\log {\rm{x}} - \frac{{\rm{x}}}{{\rm{y}}}}}$ = $\frac{{\rm{y}}}{{\rm{x}}}\left( {\frac{{{\rm{xlogy}} - {\rm{y}}}}{{{\rm{ylogx}} - {\rm{x}}}}} \right)$.

 

e. xsinx = ysiny

Solution:

xsinx = ysiny

Or, sinx.logx = siny.logy   [taking log on both sides]

Or, cosx.logx + sinx. $\frac{1}{{\rm{x}}}$ = cosy. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.logy + siny$.\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{y}}}{{\rm{x}}}\left( {\frac{{{\rm{x}}.{\rm{cosx}}.{\rm{logx}} + {\rm{sinx}}}}{{{\rm{y}}.{\rm{cosy}}.{\rm{logy}} + {\rm{siny}}}}} \right)$.

 

12. Find the derivative of:

(i) xtanx + (tanx)x

Solution

Let, y = xtanx + (tanx)x

Or, y = u + v →$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{du}}}}{{{\rm{dx}}}} + \frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ ….(i)

Where, u = xtanx  and v = (tanx)x

Log u = tanx.logx

Logv = xlog(tanx).

So, $\frac{1}{{\rm{u}}}.\frac{{{\rm{du}}}}{{{\rm{dx}}}}$ = sec2x.logx + tanx.$\frac{1}{{\rm{x}}}$

So, $\frac{{{\rm{du}}}}{{{\rm{dx}}}}$ = xtanx(sec2x.logx $\frac{{{\rm{tanx}}}}{{\rm{x}}}$)

So, $\frac{1}{{\rm{v}}}.\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ = 1.logtanx + $\frac{{\rm{x}}}{{{\rm{tanx}}}}$.sec2x

So, $\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ = (tanx)x$\left( {{\rm{logtanx}} + \frac{{{\rm{xse}}{{\rm{c}}^2}{\rm{x}}}}{{{\rm{tanx}}}}} \right)$.

Thus, from (i),

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = xtanx$\left( {{{\sec }^2}{\rm{xlogx}} + \frac{{{\rm{tanx}}}}{{\rm{x}}}} \right)$ + (tanx)x(log.tanx + 2x.cosec2x)

 

(ii) (tanx)cotx + (cotx)tanx

Solution:

Let y = (tanx)cotx + (cotx)tanx

So, y = u + v →$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{du}}}}{{{\rm{dx}}}}$ + $\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ …(i)

Where, u = (tanx)cotx and v = (cotx)tanx.

Since, u = (tanx)cotx.

So, logu = cotx.log(tanx)   [on taking log]

Or, $\frac{1}{{\rm{u}}}$.$\frac{{{\rm{du}}}}{{{\rm{dx}}}}$ = cotx. $\frac{1}{{{\rm{tanx}}}}$.sec2x – cosec2x.log(tanx)

So, $\frac{{{\rm{du}}}}{{{\rm{dx}}}}$ = (tanx)cotx{cosec2x(1 – logtanx)}.

Again, v = (cotx)tanx.

Or, logv = tanx.log(cotx)

Or, $\frac{1}{{\rm{v}}}.\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ = sec2xlog(cotx) + tanx.$\frac{1}{{{\rm{cotx}}}}$.(-cosec2x).

So, $\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ = (cotx)tanx(sec2x.logcotx – sec2x)

So, $\frac{{{\rm{dv}}}}{{{\rm{dx}}}}$ = (cotx)tanx{sec2x(log.cotx – 1)}

Thus from (i),

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = (tanx)cotx{cosec2x(1 – logtanx) + (cotx)tanx{sec2x(log.cotx – 1)}

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.