Relation, Function and Graphs Exercise: 2.4 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 2.4

1) Prove that:

a) loga(xy3/z2) = logax + 3logay – 2logaz

Solution:

L.H.S. = loga(xy3/z2)

= loga(xy3) – logaz2.     [loga(x/y) = logax – logay]

= logax +logay3– logaz2  [loga(xy)= logax + logay]

= logax + 3logay – 2logaz [logaxp = P. logax]

= logax + 3logay – 2logaz

= R.H.S. 

b) loga2x + 3(logax–logay) = loga(2x4/y3)  [logax–logay = loga(x/y)]

Solution:

 L.H.S. = loga2x + 3(logax–logay)

= loga2x + 3logax – 3logay

= loga2x + logax3– logay3

loga(2x.x3) – logay3 [logax + logay = loga(x/y)]

= loga(2x4/y3)  [logax–logay = loga(x/y)]

= R.H.S. 

c) logax2– 2loga$\sqrt {\rm{x}} {\rm{\: }}$= logax

Solution:

L.H.S. = logax2– 2loga$\sqrt {\rm{x}} {\rm{\: }}$

= logax2 – 2logax1/2

= 2logax – 2.$\frac{1}{2}$logax [logaxp = P. logax]

= 2logax –logax

= logax

= R.H.S.

d) $\[{a^{{{\log }_a}x}}\]$=x

Solution:

Proof:

Let logax = y

So, x = ay

Or ay = x

So, $\[{a^{{{\log }_a}x}}\]$= x   [ y = logax]

e) logaax=x

Solution:

L.H.S. = logaax

= x. loga a [logaxp = P.logax]

=x

=RHS

f) (log a)2 – (log b)2= log(ab).log(a/b)

Solution:

L.H.S. = (log a)2 – (log b)2

= (log a + logb)(loga – logb)

= log(ab).log(a/b)

= R.H.S. 

g) log(1+2+3) = log1 + log2 + log3

Solution:

L.H.S. = log(1+2+3)

= log6

= log(1.2.3)

= log(1.2) + log3            [log (ab) = log a + logb]

= log1 + log2 + log3

= R.H.S.

h) xlog y – log z. ylog z – logx.zlogx – logy=1

Solution:

Let xlog y – log z. ylog z – logx.zlogx – logy = t …(i)

To show: t = 1.

Now, taking log on both sides of (i), we have,

log (xlog y – log z. ylog z – log x . zlog x – log y) = log t

or, log xlog y – log z + log ylog z – log x + log zlog x – log y  = log t

or, (log y – log z)log x + (log z – log x)log y + (log x – log y) log z = log t.

or, log y log x – log z log x + log z log y – log x log y + log x log z – log y log z = log t

or, 0 = log t

so, log t = log 1     [log 1 = 0]

So, t = 1 

i) (yz)log y – log z. (zx)log z – logx. (xy)logx – logy = 1

Solution:

Let (yz)log y – log z. (zx)log z – logx. (xy)logx – logy = t..(i)

To show: t = 1

Now, taking log on both sides of (i) we have,

log{(yz)log y – log z. (zx)log z – logx. (xy)logx – logy} = log t

or, log(yz)log y – log z. log (zx)log z – logx. log (xy)logx – logy = log t

or, (log y – log z)log(yz) + (log z – log x)log(zx) + (log x – log y)log(xy) = log t

or, (log y – log z)(log y + log z) + (log z – log x)(log z + log x) + (log x – log y)(log x + log y) = log t

or, (log y)2 – (log z)2 + (log z)2 – (log x)2 + (log x)2 – (log y)2 = log t

or. 0 = log t

so, log t = log 1     [log 1 = 0]

So, t = 1. Proved.

j) log $\sqrt {{\rm{a}}\sqrt {{\rm{a}}\sqrt {{{\rm{a}}^2}} } } $= 1

Solution:

L.H.S. = log $\sqrt {{\rm{a}}\sqrt {{\rm{a}}\sqrt {{{\rm{a}}^2}} } } $

= log $\sqrt {{\rm{a}}.\sqrt {{\rm{a}}.{\rm{a}}} } $

= log$\sqrt {{\rm{a}}\sqrt {{{\rm{a}}^2}} } $

= log $\sqrt {{\rm{a}}.{\rm{a}}} $

= log $\sqrt {{{\rm{a}}^2}} $

= log a

= 1

= R.H.S. 

2. If a2+b2=2ab, show that \[\log \frac{{a + b}}{2} = \frac{{\log a + \log b}}{2}\].

Solution:

Here: a2+b2=2ab

a2+b2-2ab=0

a-b=0 a=b

LHS: \[\log \frac{{a + b}}{2} = \log \frac{{a + a}}{2} = \log a\]

RHS: \[\frac{{\log a + \log b}}{2} = \frac{{\log ab}}{2} = \log \frac{{{a^2}}}{2} = \log \sqrt {{a^2}}  = \log a\]

Thus, LHS = RHS

3) If f(x) = log $\frac{{\left( {1 - {\rm{x}}} \right)}}{{1 + {\rm{x}}}}$ (-1<x<1), show that f $\left( {\frac{{2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2}}}} \right)$ = 2f(ab) where |ab|<1.

Solution:

Here, f(x) = log $\frac{{\left( {1 - {\rm{x}}} \right)}}{{1 + {\rm{x}}}}$

Now,

f $\left( {\frac{{2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2}}}} \right)$

= log $\frac{{1 - \frac{{2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2}}}}}{{1 + \frac{{2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2}}}}}$

= log $\frac{{1 + {{\rm{a}}^2}{{\rm{b}}^2} - 2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2} + 2{\rm{ab}}}}$

= log $\left( {\frac{{1 - {\rm{a}}{{\rm{b}}^2}}}{{1 + {\rm{a}}{{\rm{b}}^2}}}} \right)$

= 2log $\left( {\frac{{1 - {\rm{a}}{{\rm{b}}^2}}}{{1 + {\rm{a}}{{\rm{b}}^2}}}} \right)$

= 2 f(ab)                 [log $\frac{{\left( {1 - {\rm{x}}} \right)}}{{1 + {\rm{x}}}}$ = f(x)]

 

4) If x = log2a, y = log3a,2a and z = log4a3a, prove that xyz+1=2xyz.

Proof:

Here, x = log2a   a = (2a)x ..(i)

y = log3a    2a = (3a)y ..(ii)

and z = log4a   3a = (4a)z ..(iii)

Now, a = (2a)x     [from(i)]

Or, a = (3a)yx        [from(ii)]

Or, a = (4a)xyz       [from(iii)]

Or, 4a.a = (4a).(4a)xyz [Multiplying by 4a]

Or, (2a)2 = (4a)xyz + 1

Or, (3a)2y = (4a)xyz + 1    [2a = (3a)y]

Or, (4a)2yz = (4a)xyz + 1 [3a = (4a)z]

So, 2z = xyz + 1

 

5) If $\frac{{{\rm{logx}}}}{{{\rm{y}} - {\rm{z}}}}$=$\frac{{{\rm{logy}}}}{{{\rm{z}} - {\rm{x}}}}$=$\frac{{{\rm{logz}}}}{{{\rm{x}} - {\rm{y}}}}$, prove that xx.yy.zz = 1

Proof:

Let, $\frac{{{\rm{logx}}}}{{{\rm{y}} - {\rm{z}}}}$ = $\frac{{{\rm{logy}}}}{{{\rm{z}} - {\rm{x}}}}$= $\frac{{{\rm{logz}}}}{{{\rm{x}} - {\rm{y}}}}$ = k

So, log x = k (y – z)

Or, x log x = kx(y – z)

Or, log xx = k (xy – zx) …(i)[logxp = P logx}

Again, log y = k(z – x)

Or, y log y = ky(z – x)

So, log zz = k (zx – yz) …(ii)

Again, log z = k(x – y)

Or, z log z = kz(x – y)

So, log zz = k (zx –yz) …(iii)

Adding (i), (ii) and (iii).

Or, log x+ log yy + log zz = k (xy – zx + yz – xy + zx – yz)

Or, log(xx.yy.zz) = k.0 = 0

Or, log(xx.yy.zz) = log 1                [log1 = 0]

So, xx.yy.zz = 1 Proved.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.