Exercise 2.4
1) Prove that:
a) loga(xy3/z2)
= logax + 3logay – 2logaz
Solution:
L.H.S. = loga(xy3/z2)
= loga(xy3) – logaz2.
[loga(x/y) = logax – logay]
= logax +logay3– logaz2
[loga(xy)= logax + logay]
= logax + 3logay – 2logaz
[logaxp = P. logax]
= logax + 3logay – 2logaz
= R.H.S.
b) loga2x
+ 3(logax–logay) = loga(2x4/y3)
[logax–logay = loga(x/y)]
Solution:
L.H.S. = loga2x + 3(logax–logay)
= loga2x + 3logax – 3logay
= loga2x + logax3– logay3
= loga(2x.x3) – logay3 [logax
+ logay = loga(x/y)]
= loga(2x4/y3) [logax–logay
= loga(x/y)]
= R.H.S.
c) logax2–
2loga$\sqrt {\rm{x}} {\rm{\: }}$= logax
Solution:
L.H.S. = logax2– 2loga$\sqrt
{\rm{x}} {\rm{\: }}$
= logax2 – 2logax1/2
= 2logax – 2.$\frac{1}{2}$logax [logaxp =
P. logax]
= 2logax –logax
= logax
= R.H.S.
d) $\[{a^{{{\log
}_a}x}}\]$=x
Solution:
Proof:
Let logax = y
So, x = ay
Or ay = x
So, $\[{a^{{{\log
}_a}x}}\]$= x [ y = logax]
e) logaax=x
Solution:
L.H.S. = logaax
= x. loga a [logaxp =
P.logax]
=x
=RHS
f) (log a)2 –
(log b)2= log(ab).log(a/b)
Solution:
L.H.S. = (log a)2 – (log b)2
= (log a + logb)(loga – logb)
= log(ab).log(a/b)
= R.H.S.
g) log(1+2+3) = log1
+ log2 + log3
Solution:
L.H.S. = log(1+2+3)
= log6
= log(1.2.3)
= log(1.2) + log3
[log (ab) = log a
+ logb]
= log1 + log2 + log3
= R.H.S.
h) xlog y – log
z. ylog z – logx.zlogx – logy=1
Solution:
Let xlog y – log z. ylog z – logx.zlogx
– logy = t …(i)
To show: t = 1.
Now, taking log on both sides of (i), we have,
log (xlog y – log z. ylog z – log x .
zlog x – log y) = log t
or, log xlog y – log z + log ylog z –
log x + log zlog x – log y = log t
or, (log y – log z)log x + (log z – log x)log y + (log x –
log y) log z = log t.
or, log y log x – log z log x + log z log y – log x log y +
log x log z – log y log z = log t
or, 0 = log t
so, log t = log 1 [log 1 = 0]
So, t = 1
i) (yz)log y –
log z. (zx)log z – logx. (xy)logx – logy = 1
Solution:
Let (yz)log y – log z. (zx)log z – logx.
(xy)logx – logy = t..(i)
To show: t = 1
Now, taking log on both sides of (i) we have,
log{(yz)log y – log z. (zx)log z – logx.
(xy)logx – logy} = log t
or, log(yz)log y – log z. log (zx)log z –
logx. log (xy)logx – logy = log t
or, (log y – log z)log(yz) + (log z – log x)log(zx) + (log x
– log y)log(xy) = log t
or, (log y – log z)(log y + log z) + (log z – log x)(log z +
log x) + (log x – log y)(log x + log y) = log t
or, (log y)2 – (log z)2 +
(log z)2 – (log x)2 + (log x)2 –
(log y)2 = log t
or. 0 = log t
so, log t = log 1 [log 1 = 0]
So, t = 1. Proved.
j) log $\sqrt
{{\rm{a}}\sqrt {{\rm{a}}\sqrt {{{\rm{a}}^2}} } } $= 1
Solution:
L.H.S. = log $\sqrt {{\rm{a}}\sqrt {{\rm{a}}\sqrt
{{{\rm{a}}^2}} } } $
= log $\sqrt {{\rm{a}}.\sqrt {{\rm{a}}.{\rm{a}}} } $
= log$\sqrt {{\rm{a}}\sqrt {{{\rm{a}}^2}} } $
= log $\sqrt {{\rm{a}}.{\rm{a}}} $
= log $\sqrt {{{\rm{a}}^2}} $
= log a
= 1
= R.H.S.
2. If a2+b2=2ab,
show that \[\log \frac{{a + b}}{2} = \frac{{\log a + \log b}}{2}\].
Solution:
Here: a2+b2=2ab
⇒ a2+b2-2ab=0
⇒ a-b=0 ⇒a=b
LHS:
RHS:
Thus, LHS = RHS
3) If f(x) = log
$\frac{{\left( {1 - {\rm{x}}} \right)}}{{1 + {\rm{x}}}}$ (-1<x<1), show
that f $\left( {\frac{{2{\rm{ab}}}}{{1 + {{\rm{a}}^2}{{\rm{b}}^2}}}} \right)$ =
2f(ab) where |ab|<1.
Solution:
Here, f(x) = log $\frac{{\left( {1 - {\rm{x}}} \right)}}{{1
+ {\rm{x}}}}$
Now,
f $\left( {\frac{{2{\rm{ab}}}}{{1 +
{{\rm{a}}^2}{{\rm{b}}^2}}}} \right)$
= log $\frac{{1 - \frac{{2{\rm{ab}}}}{{1 +
{{\rm{a}}^2}{{\rm{b}}^2}}}}}{{1 + \frac{{2{\rm{ab}}}}{{1 +
{{\rm{a}}^2}{{\rm{b}}^2}}}}}$
= log $\frac{{1 + {{\rm{a}}^2}{{\rm{b}}^2} - 2{\rm{ab}}}}{{1
+ {{\rm{a}}^2}{{\rm{b}}^2} + 2{\rm{ab}}}}$
= log $\left( {\frac{{1 - {\rm{a}}{{\rm{b}}^2}}}{{1 +
{\rm{a}}{{\rm{b}}^2}}}} \right)$
= 2log $\left( {\frac{{1 - {\rm{a}}{{\rm{b}}^2}}}{{1 +
{\rm{a}}{{\rm{b}}^2}}}} \right)$
= 2 f(ab)
[log $\frac{{\left( {1 - {\rm{x}}} \right)}}{{1 + {\rm{x}}}}$ = f(x)]
4) If x = log2a,
y = log3a,2a and z = log4a3a, prove that
xyz+1=2xyz.
Proof:
Here, x = log2a ⇒ a = (2a)x ..(i)
y = log3a ⇒ 2a
= (3a)y ..(ii)
and z = log4a ⇒ 3a
= (4a)z ..(iii)
Now, a = (2a)x [from(i)]
Or, a = (3a)yx
[from(ii)]
Or, a = (4a)xyz
[from(iii)]
Or, 4a.a = (4a).(4a)xyz [Multiplying by 4a]
Or, (2a)2 = (4a)xyz + 1
Or, (3a)2y = (4a)xyz +
1 [2a = (3a)y]
Or, (4a)2yz = (4a)xyz + 1 [3a
= (4a)z]
So, 2z = xyz + 1
5) If $\frac{{{\rm{logx}}}}{{{\rm{y}}
- {\rm{z}}}}$=$\frac{{{\rm{logy}}}}{{{\rm{z}} - {\rm{x}}}}$=$\frac{{{\rm{logz}}}}{{{\rm{x}}
- {\rm{y}}}}$, prove that xx.yy.zz = 1
Proof:
Let, $\frac{{{\rm{logx}}}}{{{\rm{y}} - {\rm{z}}}}$ =
$\frac{{{\rm{logy}}}}{{{\rm{z}} - {\rm{x}}}}$= $\frac{{{\rm{logz}}}}{{{\rm{x}}
- {\rm{y}}}}$ = k
So, log x = k (y – z)
Or, x log x = kx(y – z)
Or, log xx = k (xy – zx) …(i)[logxp =
P logx}
Again, log y = k(z – x)
Or, y log y = ky(z – x)
So, log zz = k (zx – yz) …(ii)
Again, log z = k(x – y)
Or, z log z = kz(x – y)
So, log zz = k (zx –yz) …(iii)
Adding (i), (ii) and
(iii).
Or, log xx + log yy + log zz =
k (xy – zx + yz – xy + zx – yz)
Or, log(xx.yy.zz) = k.0 = 0
Or, log(xx.yy.zz) = log
1
[log1 = 0]
So, xx.yy.zz = 1 Proved.