Real Logic, Sets and Real Number System Exercise: 1.2 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 1.2

 

1) If U={1,2,3,4,……9,10}, A={1,2,3,4}, B={3,5,7,8} and C={1,2,7,8}, Find:

Solution:

a) A U B = {1, 2, 3, 4} U {3, 5, 7, 8} = {1, 2, 3, 4, 5, 7, 8} 

b. A ∩ C = {1, 2, 3, 4} ∩ {1, 2, 7, 8} {1, 2} 

c. (A – B) ∩ C = ({1, 2, 3, 4} – {3, 5, 7, 8}) ∩ {1, 2, 7, 8}= {1, 2, 4} ∩ {1, 2, 7, 8} = {1, 2} 

d. A U C = {1, 2, 3, 4} U {1, 2, 7, 8}

So, A U C = {1, 2, 3, 4, 7, 8}

Now, $\overline {{\rm{AUC}}} $ = U – (AUC)

So, $\overline {{\rm{AUC}}} $ = {5, 6, 9, 10} 

e. ${\rm{\bar B}}$ = U – B = {1, 2, 3, …9, 10} – {3, 5, 7, 8}

= {1, 2, 4, 6, 9, 10}

Or, ${\rm{\bar C}}$ = U – C = {1, 2, 3, ….9, 10} – {1, 2, 7, 8}

Or, ${\rm{\bar B\: }}$U ${\rm{\bar C}}$ = {1, 2, 4, 6, 9, 10} U {3, 4, 5, 6, 9, 10}

Or, ${\rm{\bar B\: }}$U ${\rm{\bar C}}$ = {1, 2, 3, 4, 5, 6, 9, 10} 

f. (AUB) – C = {1, 2, 3, 4, 5, 7, 8} – {1, 2, 7, 8}          [from1(a)]

= {3, 4, 5}

 

2) If U={a,b,c,d,…….i,j,k}, A={b,c,d,e}, B={d,e,f,g,h,i}, C={a,e,I,o,u}, D={b,d,j,k}.

Solution:

a. AUB

= {b, c, d, e} U {d, e, f, g, h, i}

= {b, c, d, e, f, g, h, i}

b. A∩C

= {b, c, d, e} ∩ {a, e, i, o, u}

= {e} 

c. A – B

= {b, c, d, e} – {d, e, f, g, h, i}

= {b, c} 

d. A – C

= {b, c, d, e} – {a, e, i, o, u}

= {b, c, d} 

e. (A – C) ∩ C

= {b, c, d} ∩ {a, e, i, o, u} [from 2(d)]

= ɸ 

f. A $\Delta $ D

= (A – D) U (D – A)

=({b, c, d, e} – {b, d, j, k}) U ({b, d, j, k} – {b, c, d, e})

= {c, e} U {j, k}

= {c, e, j, k} 

g) (AUB) – C

= {b, c, d, e, f, g, h, i} – {a, e, i, o, u} [from 2(a)]

= {b, c, d, f, g, h} 

h) A∩ ${\rm{\bar B}}$

=A(U – B)

= {b,c,d,e}∩[{a, b, c, d, ….i, j, k} – {d, e, f, g, h, i}]

={b,c,d,e} {a, b, c}={b,c}

i) ${\rm{\bar A-B}}$

= U – (A – B)

= {a, b, c, d, ….i, j, k} – {b, c}

= {a, d, e, f, g, h, i, j, k}

 

3. a)Given the sets

U = {x:x is a positive integer les than 12}, A={3,5,7,9}, B={1,2,3,8,9}, C={1,4,7,10}, find $\overline {{\rm{AUB}}} $, (A-B) U C, (A-C) ∩ B.

Solution:

Here, U = {x:x is a positive integer les than 12}

So, U = {1, 2, 3, ….11}

Now, A U B = {3, 5, 7, 9} U {1, 2, 3, 8, 9} = {1, 2, 3, 5, 7, 8, 9}

So,

$\overline {{\rm{AUB}}} $

= U – (AUB)

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} – P1, 2, 3, 5, 7, 8, 9}

= {4, 6, 10, 11}

Again, A – B = {3, 5, 7, 9} – {1, 2, 3, 8, 9} = {5, 7}

So,

(A – B) U C

= {5, 7} U {1, 4, 5, 7, 10} = {1, 4, 5, 7, 10}

And,

A – C = {3, 5, 7, 9} – {1, 4, 7, 10} = {3, 5, 9}

So,

(A – C) ∩ B

= {3, 5, 9} ∩ {1, 2, 3, 8, 9} {3, 9} 

b) Given U = {x:x is a natural number upto 20}, A={ x:x≥ 6}, B = {x:x ≤ 8} and C = {x:10< x < 15, find B U C, A∩B, A-C and $\overline {{\rm{AUB}}} $.

Solution:

Here, U = {x:x is a natural number upto 20}

So, U = {1, 2, 3,...20}

A = {x:x≥ 6} = {6, 7, 8, ….20}

B = {x:x ≤ 8} = {1, 2, 3, ….8}

C = {x:10< x < 15} = {11, 12, 13, 14}

Now, B U C = {1, 2, 3, 4, 5, 6, 7, 8} U {11, 12, 13, 14}

So,

B U C

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

Again,

A∩B

= {6, 7, 8, …20} ∩ {1, 2, 3, ….8} = {6, 7, 8}

And,

A – C

= {6, 7, 8….20} – {11, 12, 13, 14}

= {6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20}

And A U B = {6, 7, 8, …., 20} U {1, 2, 3….8}

= {1, 2, 3, …..20} = U.

So,

$\overline {{\rm{AUB}}} $

= U – (AUB) = U – U = ɸ

 

4. a) If A = {x:x = 2n + 1, n≤5, nԑN} and B= {x:x = 3n – 2, n≤4, nԑN}, find A U B, A ∩ B and B – A.

Solution:

A = {x:x = 2n + 1, n≤5, nԑN}

So, A = {3, 5, 7, 9, 11}

B = {x:x = 3n – 2, n≤4, nԑN}

So, B = {1, 4, 7, 10}

Now,

A U B

= {3, 5, 7, 9, 11} U {1, 4, 7, 10}

= {1, 3, 4, 5, 7, 9, 10, 11}

A ∩ B

= {3, 5, 7, 9, 11} ∩ {1, 4, 7, 10}

= {7}

And,

B – A =

{1, 4, 7, 10} – {3, 5, 7, 9, 11} = {1, 4, 10}

b) If A is set of multiples of 3 less than 20, B is the set of multiples of 6 less or equal to 30 and U is the set of all natural numbers, find A ∩ B and A-B.

Solution:
here, U = {1, 2, 3, ….},

A = {3, 6, 9, 12, 15, 18}

B = {6, 12, 18, 24, 30}

So,

A ∩ B =

{3, 6, 9, 12, 15, 18} ∩ {6, 12, 18, 24, 30}.

= {6, 12, 18}

And

A – B

= {3, 6, 9, 12, 15, 18} – {6, 12, 18, 24, 30}

= {3, 9, 15}

c) If U ={x: –1≤x – 2 ≤7}, A ={x:x is a prime number} and B = {x:x is a odd number}, find

Solution

Here, U = {x: –1≤x – 2 ≤7} = {1, 2, 3, 4, 5, 6, 7, 8, 9}

A ={x:x is a prime number} = {2, 3, 5, 7}

B = {x:x is a odd number} = {1, 3, 5, 7, 9}

Now,

(i) The sets if elements which are either prime or odd

A U B = {2, 3, 5, 7} U {1, 3, 5, 7, 9} = {1, 2, 3, 5, 7, 9} 

(ii) The sets if elements which are prime as well as odd

A U B = {2, 3, 5, 7} ∩ {1, 3, 5, 7, 9} = {3, 5, 7} 

(iii) The sets if elements which are prime but not odd

 A – B = {2, 3, 5, 7} – {1, 3, 5, 7, 9} = {2}

 

5. Let U= {a, b, c, d, e, f, g, h}, A= {a, b, c, d}, B= {c, d, e, f} and C= {d, e, f, g, h}. Verify the following relations:

Solution:

A U B = {a, b, c, d} U {c, d, e, f} = {a, b, c, d, e, f}

A U C = {a, b, c, d} U {d, e, f, g, h} = {a, b, c, d, e, f, g, h}

B ∩ C = {c, d, e, f} U {d, e, f, g, h} = {d, e, f}

a) A U (B ∩ C) = (A U B) ∩ (A U C)

L.H.S. = A U (B ∩ C)

= {a, b, c, d, e, f} U {d, e, f} = {a, b, c, d, e, f}

R.H.S. = (A U B) ∩ (A U C)

= {a, b, c, d, e, f} ∩ {a, b, c, d, e, f, g, h} = {a, b, c, d, e, f}

Hence, A U (B ∩ C) = (A U B) ∩ (A U C)

b) A ∩ (B U C) = (A∩B) U (A ∩ C)

A ∩ B = {a, b, c, d} ∩ {c, d, e, f} = {c, d}

A ∩ C = {a, b, c, d} ∩ {d, e, f, g, h} = {d}

B U C = {c, d, e, f} U {d, e, f, g, h} = {c, d, e, f, g, h}

Now, LHS = A ∩ (B U C) = {a, b, c, d} ∩ {c, d, e, f, g, h} = {c, d}

RHS = (A∩B) U (A ∩ C) = {c, d} U {d} = {c, d}

Hence, A ∩ (B U C) = (A∩B) U (A ∩ C)

c) $\overline {{\rm{AUB}}}  = {\rm{\bar A}}\mathop\cap\nolimits^ {\rm{\bar B}}$

Solution: ${\rm{\bar A}}$ = U – A = {a, b, c, d, e, f, g, h} – {a, b, c, d} = {e, f, g, h}

${\rm{\bar B}}$ = U – B = {a, b, c, d, e, f, g, h} – {c, d, e, f} = {a, b, g, h}

Now,

LHS = $\overline {{\rm{AUB}}} $

= U – (AUB)

= {a, b, c, d, e, f, g, h} – {a, b, c, d, e, f} = {g, h}

R.H.S. = ${\rm{\bar A}}\mathop\cap\nolimits^ {\rm{\bar B}}$

= {e, f, g, h} ∩ {a, b, g, h}

= {g, h}

Hence, $\overline {{\rm{AUB}}}  = {\rm{\bar A}}\mathop\cap\nolimits^ {\rm{\bar B}}$

d) A – (B U C)= (A – B) ∩ (A – C)

Here,

A – B = {a, b, c, d} – {c, d, e, f} = {a, b}

A – C = {a, b, c, d} – {d, e, f, g, h} = {a, b, c}

Now,

LHS = A – (B U C)

= {a, b, c, d} – {c, d, e, f, g, h}

= {a, b}

RHS = (A – B) ∩ (A – C)

= {a, b} ∩ {a, b, c}

= {a, b}

Hence, A – (B U C)= (A – B) ∩ (A – C)

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.