Class 11 Basic Mathematics Solution Exercise 14.1 |
Exercise 14.1
1. a) Find the standard
deviation from the following set of observation
20, 25, 30, 36, 32,
43
Solution:
Sum of observation ($\sum x $) = 20+25+30+36+32+43 =186
x |
d=x-$\bar x$ |
d2 |
20 |
-11 |
121 |
25 |
-6 |
36 |
30 |
-1 |
1 |
36 |
5 |
25 |
32 |
1 |
1 |
43 |
12 |
144 |
$\sum x = 186$ |
|
$\sum {{d^2}} = 328$ |
Thus, Standard Deviation =$\sqrt {\frac{{\sum {{d^2}}
}}{N}}$ = $\sqrt {\frac{{328}}{6}} $=3.01
b) Daily Expenditure
of 6 families are given below:
Rs.240, Rs.180, Rs.
320, Rs.160, Rs.260, Rs.400
Find Standard
Deviation.
Solution:
Sum of expenditure ($\sum x $) = 240+180+320+160+260+400 = 1560
x |
d=x-$\bar x$ |
d2 |
240 |
-20 |
400 |
180 |
-80 |
6400 |
320 |
60 |
3600 |
160 |
-100 |
10000 |
260 |
0 |
0 |
400 |
140 |
19600 |
$\sum x = 1560$ |
|
$\sum {{d^2}} = 40000$ |
Thus, Standard Deviation =$\sqrt {\frac{{\sum {{d^2}}
}}{N}}$ = $\sqrt {\frac{{40000}}{6}} $=81.65
2. a) The following table presents the distribution of the
bonus for 50 workers.
Bonus |
5 |
10 |
15 |
20 |
25 |
Frequency |
12 |
20 |
8 |
6 |
4 |
Find the mean and Standard Deviation.
Solution:
Bonus(x) |
Frequency(f) |
fx |
x - ${\rm{\bar x}}$ |
(x - ${\rm{\bar x}}$)2 |
f(x - ${\rm{\bar x}}$)2 |
5 10 15 20 25 |
12 20 8 6 4 |
60 200 120 120 100 |
-7 -2 3 8 13 |
49 4 9 64 169 |
588 80 72 384 676 |
|
N = 50 |
$\mathop \sum \nolimits^ {\rm{fx}}$ = 600 |
|
|
$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$=1,800 |
We have, Mean(${\rm{\bar x}}$)= $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{600}}{{50}}$ = 12.
Again, S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{n}}}} $ = $\sqrt {\frac{{1800}}{{50}}} $ = $\sqrt {36} $ = 6.
b) Find the standard deviation from the following data:
X |
10 |
20 |
30 |
40 |
50 |
f |
8 |
12 |
15 |
9 |
6 |
Solution:
Bonus(x) |
Frequency(f) |
fx |
x - ${\rm{\bar x}}$ |
(x - ${\rm{\bar x}}$)2 |
f(x - ${\rm{\bar x}}$)2 |
10 20 30 40 50 |
8 12 15 9 6 |
80 240 450 360 300 |
- 18.6 -8.6 1.4 11.4 21.4 |
345.96 73.96 1.96 129.96 457.96 |
2767.68 887.52 29.4 1169.64 2747.76 |
|
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50 |
$\mathop \sum \nolimits^ {\rm{fx}}$ = 1430 |
|
|
$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}}
\right)^2}$=7602. |
We have, Mean(${\rm{\bar x}}$)= $\frac{{\mathop \sum
\nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{1430}}{{50}}$ = 28.6
Again, S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{n}}}} $ = $\sqrt
{\frac{{7602}}{{50}}} $ = $\sqrt {152.04} $ = 12.23.
C) Find the variance
of the following data:
Variable |
10 |
12 |
15 |
18 |
20 |
Frequency |
2 |
7 |
10 |
8 |
3 |
Solution:
Let Assume Mean be A=15.
X |
f |
d=x-A |
fd |
fd2 |
10 |
2 |
-5 |
-10 |
50 |
12 |
7 |
-3 |
-21 |
61 |
15 |
10 |
0 |
0 |
0 |
18 |
8 |
3 |
24 |
72 |
20 |
3 |
5 |
15 |
75 |
|
N=30 |
|
$\sum {fd} = 8$ |
$\sum {f{d^2}} = 258$ |
Standard Deviation = $\sigma
= {\rm{ }}\sqrt {\frac{{\sum {f{d^2}} }}{N} - {{\left( {\frac{{\sum {fd}
}}{N}} \right)}^2}} $
=$\sigma {\rm{
}}\sqrt {\frac{{258}}{{30}} - {{\left( {\frac{8}{{30}}} \right)}^2}} $
=$ \sqrt {8.52} $
=2.92
And Variance = ${\sigma ^2} = {2.92^2} = 8.52$
3. a) Find the standard
deviation from the following frequency distribution table:
Age |
2-4 |
4-6 |
6-8 |
8-10 |
Frequency |
6 |
6 |
7 |
2 |
Solution:
Age |
F |
Mid-value(x) |
fx |
x - ${\rm{\bar x}}$ |
(x - ${\rm{\bar x}}$)2 |
f(x - ${\rm{\bar x}}$)2 |
2 – 4 4 – 6 6 – 8 8 – 10 |
6 5 7 2 |
3 5 7 9 |
18 25 49 18 |
-2.5 -0.5 1.5 3.5 |
6.25 0.25 2.25 12.25 |
37.5 1.25 15.75 24.5 |
|
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 20 |
|
$\mathop \sum \nolimits^ {\rm{fx}}$ = 110 |
|
|
$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} -
{\rm{\bar x}}} \right)^2}$= 79. |
So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^
{\rm{fx}}}}{{\rm{N}}}$ = $\frac{{110}}{{20}}$ = 5.5.
Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt
{\frac{{79}}{{20}}} $ = $\sqrt {3.95} $ = 1.99
b) Calculate the
mean, standard deviation and the coefficient of variation from the following
frequency distribution table:
Income |
300-400 |
400-500 |
500-600 |
600-700 |
700-800 |
No. Of Person |
8 |
12 |
20 |
6 |
4 |
Solution:
Income |
F |
x |
fx |
x - ${\rm{\bar x}}$ |
(x - ${\rm{\bar x}}$)2 |
f(x - ${\rm{\bar x}}$)2 |
300 – 400 400 – 500 500 – 600 600 – 700 700 – 800 |
8 12 20 6 4 |
350 450 550 650 750 |
2800 5400 11000 3900 3000 |
-172 -72 28 128 228 |
29584 5184 784 16384 51984 |
236672 62208 15680 98304 207936 |
|
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50 |
|
$\mathop \sum \nolimits^ {\rm{fx}}$ = 26100 |
|
|
$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} -
{\rm{\bar x}}} \right)^2}$= 620800. |
So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^
{\rm{fx}}}}{{\rm{N}}}$ = $\frac{{26100}}{{50}}$ = Rs.522.
Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt
{\frac{{620800}}{{50}}} $ = $\sqrt {12416} $ = Rs. 111.43
Coefficient of variation (C.V.) = $\frac{\sigma }{{\rm{x}}}$
* 100% = $\frac{{111.43}}{{522}}$ * 100% = 21.35%.
c) Determine the
mean, standard deviation and coefficient of variation from the following
frequency data:
Profits |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
No. of Shops |
8 |
13 |
16 |
8 |
5 |
Solution:
Income |
f |
x |
fx |
x - ${\rm{\bar x}}$ |
(x - ${\rm{\bar x}}$)2 |
f(x - ${\rm{\bar x}}$)2 |
0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 |
8 13 16 8 5 |
5 15 25 35 45 |
40 195 400 280 225 |
-17.8 -7.8 2.2 12.2 22.5 |
316.84 60.84 4.84 148.84 492.84 |
2534.72 790.92 77.44 1190.72 2464.2 |
|
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50 |
|
$\mathop \sum \nolimits^ {\rm{fx}}$ = 1140 |
|
|
$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} -
{\rm{\bar x}}} \right)^2}$= 7058. |
So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^
{\rm{fx}}}}{{\rm{N}}}$ = $\frac{{1140}}{{50}}$ = Rs.22.8
Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt
{\frac{{7083}}{{50}}} $ = $\sqrt {141.16} $ = Rs. 11.88
Coefficient of variation (C.V.) = $\frac{\sigma }{{\rm{x}}}$
* 100% = $\frac{{11.88}}{{22.8}}$ * 100% = 52.1%.
4. a) The coefficient
of variation of two series are 24% and 40% and their respective standard
deviaton are 6 and 8, find the respective means.
Solution:
For Ist Series:
C.V =24%
S.D. (σ) = 6
We Know:
$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\%
\\or,\bar x = \frac{6}{{24}} \times 100\%
= 25\end{array}$
For 2nd Series:
C.V =40%
S.D. (σ) = 8
We Know:
$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\%
\\or,\bar x = \frac{8}{{40}} \times 100\%
= 20\end{array}$
b) The coefficient of
variation of two series is 45% and 30% and their respective means are 16 and
40, find their respective standard deviations.
Solution:
For Ist Series:
C.V =45%
Mean ${(\bar x)}$ =16
We Know:
$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\%
\\i.e.\;{\rm{45\% = }}\frac{\sigma
}{{16}} \times 100\% \\or,\,\sigma =
\frac{{16 \times 45\% }}{{100}} = 7.2\end{array}$
For 2nd Series:
C.V =30%
Mean ${(\bar x)}$ =40
We Know:
$[\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\%
\\i.e.\;{\rm{30\% = }}\frac{\sigma
}{{40}} \times 100\% \\or,\,\sigma =
\frac{{30 \times 40\% }}{{100}} = 12\end{array}$
5. a) Following are
the information about the marks of two students A and B
|
A |
B |
Average Marks |
84 |
92 |
Variance of Marks |
16 |
25 |
Examine who has got
the uniform mark.
Solution:
For student A,
Or, ${\rm{\bar x}}$ = 84, σ2 = 16.
So, σ = 4.
So, C.V. = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{4}{{84}}$ * 100% = 4.76%.
For student B,
Or, ${\rm{\bar x}}$ = 92, σ2 = 25.
So, σ = 5.
So, C.V. = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{5}{{92}}$ * 100% = 5.43%.
Here, C.V. of the student (A) < C.V. of student (B).
So, A has got the uniform mark.
b) From the following
information, examine which of the firm A or B has greater variability of
distribution of wage.
|
Firm A |
Firm B |
No. of Workers: |
25 |
15 |
Average monthly wage: |
Rs. 6400 |
Rs. 7500 |
Standard Deviation wage: |
4.5 |
5.4 |
Also find the
combined mean.
Solution:
For firm A,
n = 25, ${\rm{\bar x}}$ = 6400, σ = 4.5
C.V. = = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{{4.5}}{{6400}}$ * 100% = 0.070%.
For firm B,
n = 15, ${\rm{\bar x}}$ = 7500, σ = 54
C.V. = = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{{5.4}}{{7500}}$ * 100% = 0.072%.
Here, C.v. of firm B Is grater than C.V. of form A.
So, the distribution of wages in firm B has greater
variability than firm A.
Now, combined mean $\left( {{{{\rm{\bar x}}}_{12}}} \right)$
= $\frac{{{{\rm{n}}_1}.{{{\rm{\bar x}}}_1} + {{\rm{n}}_2}{{{\rm{\bar
x}}}_2}}}{{{{\rm{n}}_1} + {{\rm{n}}_2}}}$ = $\frac{{25{\rm{*}}6400 +
15{\rm{*}}7500}}{{25 + 15}}$ = $\frac{{272500}}{{40}}$ = 6812.5
c) The average weekly wage in a factory has
increased from Rs.4200 to Rs.4800 and the standard deviation
has increased from Rs.5 to Rs.8 . Can you conclude that the
wage has increased uniformly?
Solution:
Weekly wage amount = 4800-4200 = Rs. 600
Standard Deviation = 8-5= Rs. 3
Increased Uniformly by $\frac{{600}}{3} = 200$
d) Examine which variable X, the
length (in cm) or Y, the weight (in kg) show the greater variability from the
following data:
$\sum x = 280;\;{\sum x ^2} = 835;\;\sum Y = 565;\;{\sum Y ^2} = 3640;\,{\rm{n = 10}}$
Solution:
6. a) Following are
the marks obtained by the students X and Y in 6 tests of 100 marks each:
Test |
1 |
2 |
3 |
4 |
5 |
6 |
X |
56 |
72 |
48 |
69 |
64 |
81 |
Y |
63 |
74 |
45 |
57 |
82 |
63 |
If the consistency of
the performance is the criteria for awarding a price who should get the price?
Solution:
Arranging the marks of X and Y in ascending order.
x(X) |
d = x – 64 |
d2 |
x(Y) |
d = y – 63 |
y + d2 |
48 56 64 69 72 81 |
-16 -8 0 5 8 17 |
256 64 0 25 64 289 |
45 57 63 63 74 82 |
-18 -6 0 0 11 19 |
324 36 0 0 121 361 |
|
$\mathop \sum \nolimits^ {\rm{d}}$ = 6 |
$\mathop \sum \nolimits^ {{\rm{d}}^2}$ = 689 |
|
$\mathop \sum \nolimits^ {\rm{d}}$ = 6 |
$\mathop \sum \nolimits^ {{\rm{d}}^2}$ = 842. |
For student X,
Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^
{\rm{d}}}}{{\rm{n}}}$ = 64 + $\frac{6}{6}$ = 65.
S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{{\rm{d}}^2}}}{{\rm{n}}} - {{\left( {\frac{{\mathop \sum \nolimits^
{\rm{d}}}}{{\rm{n}}}} \right)}^2}} $ = $\sqrt {\frac{{689}}{6} - {{\left(
{\frac{6}{6}} \right)}^2}} $
= $\sqrt {116.33 - 1} $ = $\sqrt {115.33} $ = 10.74
For student Y,
Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^
{\rm{d}}}}{{\rm{n}}}$ = 63 + $\frac{6}{6}$ = 64.
S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^
{{\rm{d}}^2}}}{{\rm{n}}} - {{\left( {\frac{{\mathop \sum \nolimits^
{\rm{d}}}}{{\rm{n}}}} \right)}^2}} $ = $\sqrt {\frac{{842}}{6} - {{\left(
{\frac{6}{6}} \right)}^2}} $
= $\sqrt {139.33} $ = 11.8.
So, C.V. (X) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100 % =
$\frac{{10.74}}{{65}}$ * 100% = 16.52%.
So, C.V. (Y) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100 % =
$\frac{{11.80}}{{64}}$ * 100 % = 18.42%.
Here, C.V.(X) < C.V.(Y).
So, X should get the prize.
b) The goals scored
by two teams X and Y in the football season were as follows:
No
of Goals Scored in Match |
No.
Of Matches |
|
X |
Y |
|
0 |
27 |
17 |
1 |
9 |
9 |
2 |
8 |
6 |
3 |
5 |
5 |
4 |
4 |
3 |
Find out which team
is constituent.
Solution:
c) Ananda obtained
samples of CFL bulbs from two suppliers. He got the samples tested in his
laboratory for the lengths of the life. The results of the test are given below
which supplier's bulb shows greater variability in the length of the life?
Length
of Life |
No.
of Bulbs |
|
Supplier
A |
Supplier
B |
|
400-500 |
8 |
6 |
500-600 |
20 |
24 |
600-700 |
16 |
12 |
700-800 |
6 |
8 |
Which supplier’s bulb
shows greater variability in the length of the life.
Solution:
Length of life |
x |
d = x – a |
d2 |
For A(f) |
fd |
fd2 |
For B(f) |
fd |
fd2 |
400 – 500 500 – 600 600 – 700 700 – 800 |
450 550 650 750 |
-100 0 100 200 |
10000 0 10000 40000 |
8 20 16 6 |
-800 0 1600 1200 |
80000 0 160000 240000 |
6 24 12 8 |
-600 0 1200 1600 |
60000 0 120000 320000 |
|
|
|
|
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50 |
$\mathop \sum \nolimits^ {\rm{fd}}$ =20000 |
$\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}$ =400000 |
N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50 |
$\mathop \sum \nolimits^ {\rm{fd}}$ =2200 |
$\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}$ =500000 |
Now,
For supplier A,
Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^
{\rm{fd}}}}{{\rm{N}}}$ = 550 + $\frac{{2000}}{{50}}$ = 590.
σ(A) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}}}{{\rm{N}}}
- {{\left( {\frac{{\mathop \sum \nolimits^ {\rm{fd}}}}{{\rm{N}}}} \right)}^2}}
$ = $\sqrt {\frac{{400000}}{{50}} - {{\left( {\frac{{2000}}{{50}}} \right)}^2}}
$.
= $\sqrt {8000 - 1600} $ = 80.
So, C.V. (A) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{{80}}{{590}}$ * 100% = 15.56%.
For supplier B,
Or, ${\rm{\bar y}}$ = a + $\frac{{\mathop \sum \nolimits^
{\rm{fd}}}}{{\rm{N}}}$ = 550 + $\frac{{2200}}{{50}}$ = 594.
σ(B) = $\sqrt {\frac{{\mathop \sum \nolimits^
{\rm{f}}{{\rm{d}}^2}}}{{\rm{N}}} - {{\left( {\frac{{\mathop \sum \nolimits^
{\rm{fd}}}}{{\rm{N}}}} \right)}^2}} $ = $\sqrt {\frac{{500000}}{{50}} -
{{\left( {\frac{{2200}}{{50}}} \right)}^2}} $.
= $\sqrt {10000 - 1936} $ = $\sqrt {8064} $ = 89.8.
So, C.V. (B) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% =
$\frac{{89.8}}{{594}}$ * 100% = 15.11%.
Here, C.V. (A) < C.V. (B)
So, supplier B shows greater variability in the lengths of
life.
7. a) The average
score of 200 students in a class A is 70 with standard deviation 12 and the
average score of 300 students of collage B is observed to be 60 with standard
deviation 15. What are the combined standard deviation of scores of two
colleges combined together?
Solution:
For College A n1=200 $\begin{array}{l}{{\bar x}_1} = 70\\{\sigma _1} = 12\end{array}$ |
For College B n2=300 $\begin{array}{l}{{\bar x}_2} = 6\\{\sigma _2} = 15\end{array}$ |
$Combined{\rm{ Mean (}}{{\bar x}_{12}}) = \frac{{{n_1}{{\bar
x}_1} + {n_2}{{\bar x}_2}}}{{{n_1} + {n_2}}} = \frac{{200 \times 70 + 300
\times 60}}{{200 + 300}} = 64$
b) The monthly wage
paid to the workers of the firm A and B belonging to same industry have
presented below.
|
Firm
B |
|
No.of
workers |
50 |
40 |
Average
monthly wages |
Rs
63 |
Rs.
54 |
Variance
of wages |
81 |
36 |
Determine the
combined mean and combined standard deviation of the combined group of 90
workers.
Solution:
Firm A |
Firm B |
$\begin{array}{l}{n_2} = 50\\{{\bar
x}_2} = 63\\{\sigma _2} = 9\end{array}$ |
$\begin{array}{l}{n_2} = 40\\{{\bar
x}_2} = 54\\{\sigma _2} = 6\end{array}$ |
$Combined{\rm{ Mean (}}{{\bar x}_{12}}) = \frac{{{n_1}{{\bar
x}_1} + {n_2}{{\bar x}_2}}}{{{n_1} + {n_2}}} = \frac{{50 \times 63 + 40 \times
54}}{{50 + 40}} = 59$
$\begin{array}{l}{\sigma _{12}} = \sqrt
{\frac{{{n_1}({\sigma _1} + {d_1}^2) + {n_2}({\sigma _2} + {d_2}^2)}}{{{n_1} +
{n_2}}}} \\where,\;{d_1} = {{\bar x}_1} - {{\bar x}_{12}} = 63 - 59 = 4\\{d_2}
= {{\bar x}_2} - {{\bar x}_{12}} = 54 - 59 =
- 5\\Thus,\\{\sigma _{12}} = \sqrt {\frac{{50({9^2} + {4^2}) + 40({6^2}
+ {5^2})}}{{50 + 40}}} = 9\end{array}$
8.a) The arithmetic
mean and the standard deviation of a series of 20 items as calculated, by a
student were 20 cm and 5 cm respectively. But while calculating an item 13 were
misread as 30. Find the correct mean and standard deviation.
Solution:
n = 20, ${\bar x}$ = 20, σx =
5
Correct value = 13, wrong value = 30
$\begin{array}{l}\bar x = \frac{{\sum {{x_i}} }}{n}\\i.e.20
= \frac{{\sum {{x_i}} }}{{20}}\\or,\sum {{x_i}}
= 400\end{array}$
Corrected ∑xi = 400 – (wrong value) +
(correct value)
= 400 – 30 + 13
= 383
Corrected Mean = $\frac{{Corrected{\rm{ }}\sum {{x_i}}
}}{n} = \frac{{383}}{{20}} = 19.15$
$\begin{array}{l}{\sigma _x}^2 = \frac{{\sum {{x_i}^2} }}{n}
- {{\bar x}^2}\\\therefore 25 = \frac{{\sum {{x_i}^2} }}{{20}} -
{20^2}\\\therefore 425 = \frac{{\sum {{x_i}^2} }}{{20}}\\\therefore \sum
{{x_i}^2} = 8500\end{array}$
Corrected ∑xi2 = 8500 –
(wrong value)2 + (correct value)2
= 8500 – 900 + 169
= 7769
Corrected variance = $\begin{array}{l} =
\frac{{corrected\sum {{x_i}^2} }}{n} - {(Corrected{\rm{ }}Mean)^2}\\ =
\frac{{7769}}{{20}} - {(19.5)^2}\\ = 21.73\end{array}$
∴ Corrected S.D. = $\sqrt
{21.73} $ = 4.66
Hence, the corrected mean and S.D. are 19.15 cm and 4.66 cm
respectively.
b) The arithmetic
mean and standard deviation of 21 observations are 40 and 8 respectively. At
the time of calculation, if one item 35 is wrongly recorded. Find the new
standard deviation of the items when the wrongly recorded item is omitted.
Solution:
Number of observations (n)=21
Incorrect mean =40
Incorrect standard deviation =8
\[\bar x = \frac{1}{n}\sum\limits_{i = 1}^{21} {{x_i}} \]
\[or,\;{\rm{40 =
}}\frac{1}{{21}}\sum\limits_{i = 1}^{21} {{x_i}} \]
\[or,\sum\limits_{i = 1}^{21} {{x_i}} = 840\]
So, the incorrect sum of observations =840
Correct sum of observation =840−35=805
Correct Mean = $\frac{{Correct{\rm{ Sum }}}}{{21 - 1}} =
\frac{{805}}{{20}} = 40.25$ [since one is omitted.]