Posts

Matrices and Determinants Exercise: 5.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

XI Basic Mathematics Solution Exercise 5.1

Exercise 5.1

1) If A = $\left( {\begin{array}{*{20}{c}}4&{ - 5}\\3&6\end{array}} \right)$ and B = $\left( {\begin{array}{*{20}{c}}2&2\\{ - 1}&{ - 2}\end{array}} \right)$, Find AT,,BT(AB)T  show that (AB)T=BTAT.

Solution:

Given, A = $\left( {\begin{array}{*{20}{c}}4&{ - 5}\\3&6\end{array}} \right)$ and B = $\left( {\begin{array}{*{20}{c}}2&2\\{ - 1}&{ - 2}\end{array}} \right)$

AT = $\left( {\begin{array}{*{20}{c}}4&3\\{ - 5}&6\end{array}} \right)$ and 

BT = $\left( {\begin{array}{*{20}{c}}2&{ - 1}\\2&{ - 2}\end{array}} \right)$

AB = $\left( {\begin{array}{*{20}{c}}4&{ - 5}\\3&6\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&3\\{ - 1}&{ - 2}\end{array}} \right)$ =$\left( {\begin{array}{*{20}{c}}{8 + 5}&{12 + 10}\\{6 - 6}&{9 - 12}\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}{13}&{22}\\0&{ - 3}\end{array}} \right)$

(AB)T = $\left( {\begin{array}{*{20}{c}}{13}&0\\{22}&{ - 3}\end{array}} \right)$

BT.AT = $\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}4&3\\{ - 5}&6\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{8 + 5}&{6 - 6}\\{12 + 10}&{9 - 12}\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}{13}&0\\{22}&{ - 3}\end{array}} \right)$.

 

b) If  A = $\left( {\begin{array}{*{20}{c}}1&2&3\\0&1&4\\2&3&0\end{array}} \right)$ and B = $\left( {\begin{array}{*{20}{c}}{ - 1}&2&1\\3&0&{ - 1}\\2&1&0\end{array}} \right)$ , Find A',B', (AB)'and B'A'.

Solution:

Given, A = $\left( {\begin{array}{*{20}{c}}1&2&3\\0&1&4\\2&3&0\end{array}} \right)$ and A’ 

= $\left( {\begin{array}{*{20}{c}}1&0&2\\2&1&3\\3&4&0\end{array}} \right)$

B = $\left( {\begin{array}{*{20}{c}}{ - 1}&2&1\\3&0&{ - 1}\\2&1&0\end{array}} \right)$ and B’ 

= $\left( {\begin{array}{*{20}{c}}{ - 1}&3&2\\2&0&1\\1&{ - 1}&0\end{array}} \right)$

AB = $\left( {\begin{array}{*{20}{c}}1&2&3\\0&1&4\\2&3&0\end{array}} \right){\rm{\: }}\left( {\begin{array}{*{20}{c}}{ - 1}&2&1\\3&0&{ - 1}\\2&1&0\end{array}} \right)$ 

= $\left( {\begin{array}{*{20}{c}}{ - 1 + 6 + 6}&{2 + 0 + 3}&{1 - 2 + 0}\\{0 + 3 + 8}&{0 + 0 + 4}&{0 - 1 + 0}\\{ - 2 + 9 + 0}&{4 + 0 + 0}&{2 - 3 + 0}\end{array}} \right)$ 

=  $\left( {\begin{array}{*{20}{c}}{11}&5&{ - 1}\\{11}&4&{ - 1}\\7&4&{ - 1}\end{array}} \right)$

(AB)’ =  $\left( {\begin{array}{*{20}{c}}{11}&{11}&7\\5&4&4\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right)$

B’.A’ = $\left( {\begin{array}{*{20}{c}}{ - 1}&3&2\\2&0&1\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0&2\\2&1&3\\3&4&0\end{array}} \right)$ 

=$ \left( {\begin{array}{*{20}{c}}{ - 1 + 6 + 6}&{0 + 3 + 8}&{ - 2 + 9 + 0}\\{2 + 0 + 3}&{0 + 0 + 4}&{4 + 0 + 0}\\{1 - 2 + 0}&{0 - 1 + 0}&{2 - 3 + 0}\end{array}} \right)$ 

= $\left( {\begin{array}{*{20}{c}}{11}&{11}&7\\5&4&4\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right)$.

 

2.a) If A = $\left( {\begin{array}{*{20}{c}}1&2\\{ - 3}&6\\0&1\end{array}} \right)$, B = $\left( {\begin{array}{*{20}{c}}0&3\\5&7\\1&{ - 4}\end{array}} \right)$and k=3; compute A', B'and veryfy that:

(i)(A’)’= A

(ii)(A + B)’= A’ + B’

(ii)(A + B)’= A’ + B’

Solution:

A = $\left( {\begin{array}{*{20}{c}}1&2\\{ - 3}&6\\0&1\end{array}} \right)$

So, A’ = $\left( {\begin{array}{*{20}{c}}1&{ - 3}&0\\2&6&1\end{array}} \right)$

B = $\left( {\begin{array}{*{20}{c}}0&3\\5&7\\1&{ - 4}\end{array}} \right)$

So, B’ = $\left( {\begin{array}{*{20}{c}}0&5&1\\3&7&{ - 4}\end{array}} \right)$ 

(i)(A’)’= A

A’ = $\left( {\begin{array}{*{20}{c}}1&{ - 3}&0\\2&6&1\end{array}} \right)$

So, (A’)’ = $\left( {\begin{array}{*{20}{c}}1&2\\{ - 3}&6\\0&1\end{array}} \right)$ = A. 

(ii)(A + B)’= A’ + B’

A + B = $\left( {\begin{array}{*{20}{c}}1&2\\{ - 3}&6\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}0&3\\5&7\\1&{ - 4}\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}{1 + 0}&{2 + 3}\\{ - 3 + 5}&{6 + 7}\\{0 + 1}&{1 - 4}\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}1&5\\2&{13}\\1&{ - 3}\end{array}} \right)$

Or, (A + B)’ = $\left( {\begin{array}{*{20}{c}}1&2&1\\5&{13}&{ - 3}\end{array}} \right)$

A’ + B’ = $\left( {\begin{array}{*{20}{c}}1&{ - 3}&0\\2&6&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}0&5&1\\3&7&{ - 4}\end{array}} \right)$

= $\left( {\begin{array}{*{20}{c}}{1 + 0}&{ - 3 + 5}&{0 + 1}\\{2 + 3}&{6 + 7}&{1 - 4}\end{array}} \right)$

= $\left( {\begin{array}{*{20}{c}}1&2&1\\5&{13}&{ - 3}\end{array}} \right)$So, (A + B)’ = A’ + B’. 

(iii)(kA)’ = kA’

kA = 3$\left( {\begin{array}{*{20}{c}}1&2\\{ - 3}&6\\0&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&6\\{ - 9}&{18}\\0&3\end{array}} \right)$

So, (kA)’ = $\left( {\begin{array}{*{20}{c}}3&{ - 9}&0\\6&{18}&3\end{array}} \right)$

Or, kA’ = 3$\left( {\begin{array}{*{20}{c}}{ - 1}&3&0\\2&6&1\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}3&{ - 9}&0\\6&{18}&3\end{array}} \right)$

So, (kA)’ = kA’

 

c)If A = $\frac{1}{3}\left( {\begin{array}{*{20}{c}}1&2&2\\2&1&{ - 2}\\{ - 2}&2&{ - 1}\end{array}} \right)$ , verify that A.AT = AT.A = I where I is a unit matrix of order 3.

Soln:

A = $\frac{1}{3}\left( {\begin{array}{*{20}{c}}1&2&2\\2&1&{ - 2}\\{ - 2}&2&{ - 1}\end{array}} \right)$ Then AT = $\frac{1}{3}\left( {\begin{array}{*{20}{c}}1&2&{ - 2}\\2&1&2\\2&{ - 2}&{ - 1}\end{array}} \right)$

A.AT = $\frac{1}{9}\left( {\begin{array}{*{20}{c}}1&2&2\\2&1&{ - 2}\\{ - 2}&2&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&2&{ - 2}\\2&1&2\\2&{ - 2}&{ - 1}\end{array}} \right)$

= $\frac{1}{9}\left( {\begin{array}{*{20}{c}}{1 + 4 + 4}&{2 + 2 - 4}&{ - 2 + 4 - 2}\\{2 + 2 - 4}&{4 + 1 + 4}&{ - 4 + 2 + 2}\\{ - 2 + 4 - 2}&{ - 4 + 2 + 2}&{4 + 4 + 1}\end{array}} \right)$

= $\frac{1}{9}\left( {\begin{array}{*{20}{c}}9&0&0\\0&9&0\\0&0&9\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right) = $ I

AT.A = $\frac{1}{9}\left( {\begin{array}{*{20}{c}}1&2&{ - 2}\\2&1&2\\2&{ - 2}&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&2&2\\2&1&{ - 2}\\{ - 2}&2&{ - 1}\end{array}} \right)$

= $\frac{1}{9}\left( {\begin{array}{*{20}{c}}{1 + 4 + 4}&{2 + 2 - 4}&{ - 2 - 4 + 2}\\{2 + 2 - 4}&{4 + 1 + 4}&{4 - 2 - 2}\\{2 - 4 + 2}&{4 - 2 - 2}&{4 + 4 + 1}\end{array}} \right)$

= $\frac{1}{9}\left( {\begin{array}{*{20}{c}}9&0&0\\0&9&0\\0&0&9\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right) = $ I

So, A.AT = AT.A = I

 

3) If A = $\left( {\begin{array}{*{20}{c}}2&4&3\\2&3&4\\5&2&6\end{array}} \right)$, Find AT

a)Show that the sum of the given matrix and its transpose is a symmetric matrix.

Solution:

Given:

A = $\left( {\begin{array}{*{20}{c}}2&4&3\\2&3&4\\5&2&6\end{array}} \right)$

Then AT = $\left( {\begin{array}{*{20}{c}}2&2&5\\4&3&2\\3&4&6\end{array}} \right)$

Now, A + AT = $\left( {\begin{array}{*{20}{c}}2&4&3\\2&3&4\\5&2&6\end{array}} \right) + \left( {\begin{array}{*{20}{c}}2&2&5\\4&3&2\\3&4&6\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}4&6&8\\6&6&6\\8&6&{12}\end{array}} \right)$

Which is a symmetric matrix. 

b) Show that the difference of the given matrix and its transpose is a sjew-symmetric matrix.

Now, A – AT = $\left( {\begin{array}{*{20}{c}}2&4&3\\2&3&4\\5&2&6\end{array}} \right) - \left( {\begin{array}{*{20}{c}}2&2&5\\4&3&2\\3&4&6\end{array}} \right)$ = $\left( {\begin{array}{*{20}{c}}0&2&{ - 2}\\{ - 2}&0&2\\2&{ - 2}&0\end{array}} \right)$

4. a) If A= $\left( {\begin{array}{*{20}{c}}4&{x+2}\\2x-1&0\end{array}} \right)$ and A=AT , Find the value of x.

Solution: 

A= $\left( {\begin{array}{*{20}{c}}4&{x+2}\\2x-1&0\end{array}} \right)$ and 

AT = $\left( {\begin{array}{*{20}{c}}4&{2x-1}\\x+2&0\end{array}} \right)$ 

And, A=AT

i.e. $\left( {\begin{array}{*{20}{c}}4&{x+2}\\2x-1&0\end{array}} \right)$=$\left( {\begin{array}{*{20}{c}}4&{2x-1}\\x+2&0\end{array}} \right)$ 

or, x+2=2x-1

or,-x=-3

or,x=3

Thus, x=3.

b) If A=$\left( {\begin{array}{*{20}{c}}0&{2y-3}\\1-y&0\end{array}} \right)$ and A=-AT, Find the value of y.

Solution:

A=$\left( {\begin{array}{*{20}{c}}0&{2y-3}\\1-y&0\end{array}} \right)$ 

AT=$\left( {\begin{array}{*{20}{c}}0&{1-y}\\2y-3&0\end{array}} \right)$ and 

-AT=$\left( {\begin{array}{*{20}{c}}0&{y-1}\\3-2y&0\end{array}} \right)$ 

And, A=-AT

$\left( {\begin{array}{*{20}{c}}0&{2y-3}\\1-y&0\end{array}} \right)$ =$\left( {\begin{array}{*{20}{c}}0&{y-1}\\3-2y&0\end{array}} \right)$ 

i.e. 2y-3=y-1
or, y=2
Thus, y=2

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.