Composition and Resolution of Concurrent Force Exercise 21.1 | Basic Mathematics Solution [NEB UPDATED]

Exercise 21.1

1)In the following problems P N and Q N denote two component forces acting at an angle a and RN denotes their resultant

i) IF P=24, Q=7, α= 90, find R.

Solution:

R2 = P2 + Q2 + 2Pcosα

= 242 + 72 + 2.24.7cos90° = 576 + 49 + 0 = 625.

So, R = 25N.

ii) IF P 13, R=14, α=90 find Q

Solution:

R2 = P2 + Q2 + 2PQ cosα.

Or, 142 = 132 + Q2 + 2.13.Qcos90°

Or, 196 = 169 + Q2 + 0

So, Q = 3$\sqrt 3 $N.

iii) If Q=3, R=7, α=60 find P.

Solution:

R2 = P2 + Q2 + 2.PQcosα

Or, 72 = 32 + Q2 + 2.3.Q.cos60°.

Or, 49 = 9 + Q2 + 3Q

Or, Q2 + 3Q – 40 = 0

Or, (Q + 8)(Q – 5) = 0

So, Q = -8,5

So, Q ≠ -8.

So, Q = 5N.

iv) IF P=3, Q=5, R=7 find α.

Solution:

R2 = P2 + Q2 + 2PQcosα.

Or, 72 = 32 + 52 + 2.3.5 cosα

Or, 49 – 9 – 25 = 30cosα.

Or, 15 = 30cosα.

Or, cosα = $\frac{1}{2}$.

So, α= 60°

2) Find the resultant of the two forces P=4 N and Q=3N

i) When P acts towards east and Q towards north

Solution:

α = 90°(north)

So, R = $\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2} + 2{\rm{PQcos}}\alpha } $ = $\sqrt {{4^2} + {3^2} + 0} $ = 5N.

And tanθ = $\frac{{\rm{Q}}}{{\rm{P}}}$ = $\frac{3}{4}$ [α = 90°]

So, θ = tan-1$\left( {\frac{3}{4}} \right)$ with 4N.

ii) When P acts towards cast and Q towards north-west

Solution:

α = 135° (north-west)

So, R = $\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2} + 2{\rm{PQcos}}\alpha } $ = $\sqrt {{4^2} + {3^2} - 2.4.3.{\rm{\: }}\frac{1}{{\sqrt 2 }}} $

So, R = $\sqrt {26 - 12\sqrt2 } $,N

And θ = tan-1$\left( {\frac{{{\rm{Qsin}}\alpha }}{{{\rm{P}} + {\rm{Qcos}}\alpha }}} \right)$ = tan-1$\left( {\frac{{3.{\rm{\: }}\frac{1}{{\sqrt 2 }}}}{{4 - 3.{\rm{\: }}\frac{1}{{\sqrt 2 }}}}} \right)$

So, θ = tan-1$\left( {\frac{3}{{4\sqrt 2  - 3}}} \right)$ with 4N.

 

3) Two forces P and 2P acting at a point, have the resultant √3P Find the angle between the two given forces.

Solution:

Let α be the angle between the forces,

So, ${\left( {\sqrt 3 {\rm{P}}} \right)^2}$ = P2 + (2P)2 + 2P.2P.cosα.

Or, 3P2 = 5P2 + 4P2cosα.

Or, 4P2cosα = -2P2.

Or, cosα= $ - \frac{1}{2}$.

So, α = 120°.

 

4) Two forces whose magnitudes are P and $\sqrt 2 $P N act on a particle in directions inclined at an angle of 135o to each other, find the magnitude and direction of the resultant.

Solution:

P = P, Q = P$\sqrt 2 $, α = 135°, R = ?.

R2 = P2 + Q2 + 2PQcosα = P2 + 2p2 + 2P.$\sqrt 2 $P.cos135°.

So, R = P.

Tanθ = $\frac{{{\rm{P}}\sqrt 2 .{\rm{sin}}135\infty }}{{{\rm{P}} + {\rm{P}}\sqrt 2 {\rm{cos}}135\infty }}$ = $\frac{{{\rm{P}}\sqrt 2 \left( {\frac{1}{{\sqrt 2 }}} \right)}}{{{\rm{P}} + {\rm{P}}\sqrt 2 \left( { - \frac{1}{{\sqrt 2 }}} \right)}}$ = ∞.

So, θ= 90°.

 

5) Two forces acting at an angle of 45o have a resultant equal to $\sqrt 10 $ N. if one of the force be √2 N, find the other force.

Solution:

α = 45°, R = $\sqrt {10} $N, P = $\sqrt 2 $N, Q = ?

Or, R2 = P2 + Q2 + 2PQcosα.

Or, 10 = 2 + Q2 + 2.$\sqrt 2 $.Q cos45°

Or, 10 = 2 + Q2 + 2$\sqrt 2 $Q.$\frac{1}{{\sqrt 2 }}$.

Or, Q2 + 2Q – 8 = 0

Or, (Q + 4)(Q – 2) = 0

SO, Q = -4,2

So, Q ≠ -4.

So, Q = 2N.

 

6) At what angle do forces equal to (P+Q) newtons and (P-Q) newtons act so that the resultant may be $\sqrt {{P^2} + {Q^2}} $?

Solution:

${\left( {\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2}} } \right)^2}$ = (P + Q)2 + (P – Q)2 + 2(P + Q)(P – Q)cosα

Or, P2 + Q2 = P2 + 2PQ + Q2 + P2 – 2PQ + Q2 + 2(P2 – Q2).cosα

Or,  - P2 – Q2 = 2(P2 – Q2)cosα.

So, cosα = $ - \frac{{{{\rm{P}}^2} + {{\rm{Q}}^2}}}{{2\left( {{{\rm{P}}^2} - {{\rm{Q}}^2}} \right)}}$

 

7) Find the magnitude of two forces such that if they act at right angles, their resultant is $\sqrt 10 $  N. whilst if they act an angle of 60", their resultant is √13 N

Solution:

P = ?, Q = ?, R = $\sqrt {10} $, α= 90°.

R2 = P2 + Q2 + 2PQcos90°.

Or, 10 = P2 + Q2 + 0

So, P2 + Q2 = 10 …(i)

P = ?, Q = ?, R = $\sqrt {13} $, α= 60°.

R2 = P2 + Q2 + 2PQ.cos60°.

Or, 13 = P2 + Q2 + 2PQ.$\frac{1}{2}$.

Or, 13 = 10 + PQ  [From (i)]

So, PQ= 3.

Or, (P + Q)2 = P2 + Q2 + 2PQ = 10 + 2 * 3 = 16

So, P + Q = 4 …(ii)

Or, (P – Q)2 = P2 + Q2 – 2PQ = 10 – 2 * 3 = 4.

So, P – Q = 2 …(iii)

Adding (ii) and (iii).

Or, 2P = 6

So, P = 3.

From (i) Q = 4 – 3 = 1

So, P = 3N, Q = 1N.

 

8) Two forces PN and Q N include an angle of 120o and their resultant is √19 N. If the included angle between the forces were 60 o, their resultant would be 7 N. Find P and Q

Solution:

R2 = P2 + Q2 + 2PQ.cosα

Or, 19 = P2 + Q2 + 2PQcos120°.

So, 19 = P2 + Q2 – PQ ….(i)

Or, R2 = P2 + Q2 + 2PQcos60°.

Or, 49 = P2 + Q2 + PQ….(ii).

Adding (i) and (ii),

Or, 68 = 2P2 + 2Q2.

Or, P2 + Q2 = 34.

Subtracting (i) and (ii),

Or, 2PQ = 30

So, PQ = 15.

Or, (P + Q)2 = P2 + Q2 + 2PQ = 34 + 2 * 15 = 64.

So, P + Q = 8 ….(iii)

Or, (P – Q)2 = P2 + Q2 – 2PQ = 34 – 2 * 15 = 4

So, P – Q = 2 …(iv)

Adding (iii) and (iv)

Or, 2P = 10, So, P = 5N.

From (iii), Q = 8 – 5 = 3N.

 

9) The sum of the forces is 18 N and their resultant which is perpendicular to the smaller of the two forces is 12 N. Find the magnitude of the forces.

Solution:

P + Q = 18 ….(i)

Or, tan 90° = $\frac{{{\rm{Qsin}}\alpha }}{{{\rm{P}} + {\rm{Qcos}}\alpha }}$

Or, P + Qcosα = 0.

So, Qcosα= -P.

So, cosα = $ - \frac{{\rm{P}}}{{\rm{Q}}}$.

R2 = P2 + Q2 + 2PQ cosα.

Or, 144 = P2 + Q2 + 2PQ(-P/Q)

Or, 144 = Q2 – P2

Or, 144 = (Q + P)(Q – P).

Or, 144 = 18(Q – P)

So, Q – P = 8 ….(ii).

Adding (i) and (ii),

2Q = 26

So, Q = 13.

From(i) P + 13 = 18

So, P = 5.

So, P = 5N, Q = 13N.

 

10) Two forces of magnitude 3P, 2P respectively have a resultant R. If the first force be doubled, the magnitude of the resultant is doubled. Find the angle between the forces.

Solution:

R2 = (3P)2 + (2P)2 + 2.3P.2Pcosα = 9P2 + 4P2 + 12P2.cosα

= 13P2 + 12P2.cosα …(i)

Again (2R)2 = (6P)2 + (2P)2 + 2.6P.2P.cosα

Or, 4R2 = 36P2 + 4P2 + 24P2cosα.

Or, 4(13P2 + 12P2.cosα) = 36P2 + 4P2 + 24P2cosα [From (i)].

Or, 52P2 + 48P2.cosα = 40P2 + 24P2.cosα.

Or, 24P2.cosα = -12P2.

Or, cosα = $ - \frac{1}{2}$.

So, α= 120°.

 

11. The resultant of two forces P and Q is equal to √3Q and making an angle of 30° with the direction of P; show that P is either equal to Q or is double of Q.

Solution:

If OA and OB represent the forces P and Q, then the diagonal OC of the parallelogram OACB represent the resultant $\sqrt 3 $Q.

By given, $\angle $AOC = 30°.

Because AC and OB are equal and parallel so, AC represents Q.

Using cosine law,

Or, cos 30° = $\frac{{{\rm{O}}{{\rm{A}}^2} + {\rm{O}}{{\rm{C}}^2} - {\rm{A}}{{\rm{C}}^2}}}{{2.{\rm{OA}}.{\rm{OC}}}}$

Or, $\frac{{\sqrt 3 }}{2}$ = $\frac{{{{\rm{P}}^2} + 3{{\rm{Q}}^2} - {{\rm{Q}}^2}}}{{2{\rm{p}}.\sqrt 3 {\rm{Q}}}}$.

Or, P2 + 2Q2 = 3PQ.

Or, P2 – 3PQ + 2Q2 = 0.

Or, (P – Q)(P – 2Q) = 0

Either, P – Q = 0

SO, P = Q.

Or, P – 2Q = 0

So, P = 2Q.

So, P = Q or 2Q.

 

12. The resultant of two forces P and Q acting at an angle α is equal to (2m+1) $\sqrt {{P^2} + {Q^2}} $. When they act at an angle (90°-α) the resultant is (2m-1$\sqrt {{P^2} + {Q^2}} $ Prove that:

\[\tan \alpha  = \frac{{m - 1}}{{m + 1}}\]

Solution:

${\left\{ {\left( {2{\rm{m}} + 1} \right)\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2}} } \right\}^2}$ = P2 + Q2 + 2PQ.cosα

Or, (2m + 1)2(P2 + Q2) – (P2 + Q2) = 2PQ.cosα.

Or, (P2 + Q2){(2m + 1)2 – 1} = 2PQ.cosα

Or, (P2 + Q2)(4m2 + 4m) = 2PQcosα.

Or, (P2 + Q2).4m(m + 1) = 2PQ.cosα …(i)

Again,

Or, ${\left\{ {\left( {2{\rm{m}} - 1} \right)\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2}} } \right\}^2}$ = P2 + Q2 + 2PQ.cos(90° - α).

Or, (2m – 1)2(P2 + Q2) – (P2 + Q2) = 2PQsinα.

Or, (P2 + Q2){(2m – 1)2 – 1} = 2PQ.sinα.

Or, (P2 + Q2)(4m2 – 4m) = 2PQ.sinα.

Or, (P2 + Q2)4m(m – 1) = 2PQsinα …(Ii)

From (i) and (ii)

Or, $\frac{{2{\rm{PQ}}.{\rm{sin}}\alpha }}{{2{\rm{PQcos}}\alpha }}$ = $\frac{{\left( {{{\rm{P}}^2} + {{\rm{Q}}^2}} \right)4{\rm{m}}\left( {{\rm{m}} - 1} \right)}}{{\left( {{{\rm{P}}^2} + {{\rm{Q}}^2}} \right)4{\rm{m}}\left( {{\rm{m}} + 1} \right)}}$

tan α = $\frac{{{\rm{m}} - 1}}{{{\rm{m}} + 1}}$.

 

13. Two forces P and Q acting at a point have a resultant R. If Q be doubled, R is doubled and if Q is reversed in direction, R is again doubled. Show that P : Q : R = √2 : √3 : √2.

Solution:

R2 = P2 + Q2 + 2PQcosα ….(i)

Or, (2R)2 = P2 +(2Q)2 + 2.P.2Q.cosα.

Or, 4R2 = P2 + 4Q2 + 4PQ.cosα ….(ii)

Again, (2R)2 = P2 + Q2 + 2PQ. Cos(π – α).

Or, 4R2 = P2 + Q2 – 2PQcosα ….(iii)

Adding (i) and (iii),

Or, 5R2 = 2P2 + 2Q2

Or, 2P2 + 2Q2 – 5R2 = 0 ….(iv)

Multiplying (iii) by 2 and then adding with (ii),

Or, 12R2 = 3P2 + 6Q2

Or, P2 + 2Q2 – 4R2 = 0 ….(v)

From (iv) and (v)

Or, $\frac{{{{\rm{P}}^2}}}{{ - 8 + 10}}$ = $\frac{{{{\rm{Q}}^2}}}{{ - 5 + 8}}$ = $\frac{{{{\rm{R}}^2}}}{{4 - 2}}$.

Or, $\frac{{{{\rm{P}}^2}}}{2} = \frac{{{{\rm{Q}}^2}}}{3} = \frac{{{{\rm{R}}^2}}}{2}$

Or, $\frac{{\rm{P}}}{{\sqrt 2 }} = \frac{{\rm{Q}}}{{\sqrt 3 }} = \frac{{\rm{R}}}{{\sqrt 2 }}$

So, P:Q:R = $\sqrt 2 :\sqrt 3 :\sqrt 2 $.

 

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.