Exercise 21.1
1)In the following
problems P N and Q N denote two component forces acting at an angle a and RN
denotes their resultant
i) IF P=24, Q=7, α= 90, find R.
Solution:
R2 = P2 + Q2 +
2Pcosα
= 242 + 72 + 2.24.7cos90° =
576 + 49 + 0 = 625.
So, R = 25N.
ii) IF P 13, R=14, α=90 find Q
Solution:
R2 = P2 + Q2 +
2PQ cosα.
Or, 142 = 132 + Q2 +
2.13.Qcos90°
Or, 196 = 169 + Q2 + 0
So, Q = 3$\sqrt 3 $N.
iii) If Q=3, R=7, α=60 find P.
Solution:
R2 = P2 + Q2 +
2.PQcosα
Or, 72 = 32 + Q2 +
2.3.Q.cos60°.
Or, 49 = 9 + Q2 + 3Q
Or, Q2 + 3Q – 40 = 0
Or, (Q + 8)(Q – 5) = 0
So, Q = -8,5
So, Q ≠ -8.
So, Q = 5N.
iv) IF P=3, Q=5, R=7
find α.
Solution:
R2 = P2 + Q2 +
2PQcosα.
Or, 72 = 32 + 52 +
2.3.5 cosα
Or, 49 – 9 – 25 = 30cosα.
Or, 15 = 30cosα.
Or, cosα = $\frac{1}{2}$.
So, α= 60°
2) Find the resultant
of the two forces P=4 N and Q=3N
i) When P acts
towards east and Q towards north
Solution:
α = 90°(north)
So, R = $\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2} +
2{\rm{PQcos}}\alpha } $ = $\sqrt {{4^2} + {3^2} + 0} $ = 5N.
And tanθ = $\frac{{\rm{Q}}}{{\rm{P}}}$ = $\frac{3}{4}$ [α =
90°]
So, θ = tan-1$\left( {\frac{3}{4}} \right)$ with
4N.
ii) When P acts
towards cast and Q towards north-west
Solution:
α = 135° (north-west)
So, R = $\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2} +
2{\rm{PQcos}}\alpha } $ = $\sqrt {{4^2} + {3^2} - 2.4.3.{\rm{\: }}\frac{1}{{\sqrt
2 }}} $
So, R = $\sqrt {26 - 12\sqrt2 } $,N
And θ = tan-1$\left( {\frac{{{\rm{Qsin}}\alpha
}}{{{\rm{P}} + {\rm{Qcos}}\alpha }}} \right)$ = tan-1$\left(
{\frac{{3.{\rm{\: }}\frac{1}{{\sqrt 2 }}}}{{4 - 3.{\rm{\: }}\frac{1}{{\sqrt 2
}}}}} \right)$
So, θ = tan-1$\left( {\frac{3}{{4\sqrt 2 -
3}}} \right)$ with 4N.
3) Two forces P and 2P acting at a point, have the resultant √3P Find
the angle between the two given forces.
Solution:
Let α be the angle between the forces,
So, ${\left( {\sqrt 3 {\rm{P}}} \right)^2}$ = P2 +
(2P)2 + 2P.2P.cosα.
Or, 3P2 = 5P2 + 4P2cosα.
Or, 4P2cosα = -2P2.
Or, cosα= $ - \frac{1}{2}$.
So, α = 120°.
4) Two forces whose magnitudes are P and $\sqrt 2 $P N act on a
particle in directions inclined at an angle of 135o to each other,
find the magnitude and direction of the resultant.
Solution:
P = P, Q = P$\sqrt 2 $, α = 135°, R = ?.
R2 = P2 + Q2 +
2PQcosα = P2 + 2p2 + 2P.$\sqrt 2 $P.cos135°.
So, R = P.
Tanθ = $\frac{{{\rm{P}}\sqrt 2 .{\rm{sin}}135\infty
}}{{{\rm{P}} + {\rm{P}}\sqrt 2 {\rm{cos}}135\infty }}$ = $\frac{{{\rm{P}}\sqrt
2 \left( {\frac{1}{{\sqrt 2 }}} \right)}}{{{\rm{P}} + {\rm{P}}\sqrt 2 \left( {
- \frac{1}{{\sqrt 2 }}} \right)}}$ = ∞.
So, θ= 90°.
5) Two forces acting at an angle of 45o have a resultant
equal to $\sqrt 10 $ N. if one of the force be √2 N, find the other force.
Solution:
α = 45°, R = $\sqrt {10} $N, P = $\sqrt 2 $N, Q = ?
Or, R2 = P2 + Q2 +
2PQcosα.
Or, 10 = 2 + Q2 + 2.$\sqrt 2 $.Q cos45°
Or, 10 = 2 + Q2 + 2$\sqrt 2 $Q.$\frac{1}{{\sqrt
2 }}$.
Or, Q2 + 2Q – 8 = 0
Or, (Q + 4)(Q – 2) = 0
SO, Q = -4,2
So, Q ≠ -4.
So, Q = 2N.
6) At what angle do
forces equal to (P+Q) newtons and (P-Q) newtons act so that the resultant may
be $\sqrt {{P^2} + {Q^2}} $?
Solution:
${\left( {\sqrt {{{\rm{P}}^2} + {{\rm{Q}}^2}} } \right)^2}$
= (P + Q)2 + (P – Q)2 + 2(P + Q)(P – Q)cosα
Or, P2 + Q2 = P2 +
2PQ + Q2 + P2 – 2PQ + Q2 + 2(P2 –
Q2).cosα
Or, - P2 – Q2 = 2(P2 –
Q2)cosα.
So, cosα = $ - \frac{{{{\rm{P}}^2} + {{\rm{Q}}^2}}}{{2\left(
{{{\rm{P}}^2} - {{\rm{Q}}^2}} \right)}}$
7) Find the magnitude
of two forces such that if they act at right angles, their resultant is $\sqrt 10
$ N. whilst if they act an angle of
60", their resultant is √13 N
Solution:
P = ?, Q = ?, R = $\sqrt {10} $, α= 90°.
R2 = P2 + Q2 +
2PQcos90°.
Or, 10 = P2 + Q2 + 0
So, P2 + Q2 = 10 …(i)
P = ?, Q = ?, R = $\sqrt {13} $, α= 60°.
R2 = P2 + Q2 +
2PQ.cos60°.
Or, 13 = P2 + Q2 +
2PQ.$\frac{1}{2}$.
Or, 13 = 10 + PQ [From (i)]
So, PQ= 3.
Or, (P + Q)2 = P2 + Q2 +
2PQ = 10 + 2 * 3 = 16
So, P + Q = 4 …(ii)
Or, (P – Q)2 = P2 + Q2 –
2PQ = 10 – 2 * 3 = 4.
So, P – Q = 2 …(iii)
Adding (ii) and (iii).
Or, 2P = 6
So, P = 3.
From (i) Q = 4 – 3 = 1
So, P = 3N, Q = 1N.
8) Two forces PN and
Q N include an angle of 120o and their resultant is √19 N. If the
included angle between the forces were 60 o, their resultant would
be 7 N. Find P and Q
Solution:
R2 = P2 + Q2 +
2PQ.cosα
Or, 19 = P2 + Q2 +
2PQcos120°.
So, 19 = P2 + Q2 – PQ ….(i)
Or, R2 = P2 + Q2 +
2PQcos60°.
Or, 49 = P2 + Q2 + PQ….(ii).
Adding (i) and (ii),
Or, 68 = 2P2 + 2Q2.
Or, P2 + Q2 = 34.
Subtracting (i) and (ii),
Or, 2PQ = 30
So, PQ = 15.
Or, (P + Q)2 = P2 + Q2 +
2PQ = 34 + 2 * 15 = 64.
So, P + Q = 8 ….(iii)
Or, (P – Q)2 = P2 + Q2 –
2PQ = 34 – 2 * 15 = 4
So, P – Q = 2 …(iv)
Adding (iii) and (iv)
Or, 2P = 10, So, P = 5N.
From (iii), Q = 8 – 5 = 3N.
9) The sum of the
forces is 18 N and their resultant which is perpendicular to the smaller of the
two forces is 12 N. Find the magnitude of the forces.
Solution:
P + Q = 18 ….(i)
Or, tan 90° = $\frac{{{\rm{Qsin}}\alpha }}{{{\rm{P}} +
{\rm{Qcos}}\alpha }}$
Or, P + Qcosα = 0.
So, Qcosα= -P.
So, cosα = $ - \frac{{\rm{P}}}{{\rm{Q}}}$.
R2 = P2 + Q2 +
2PQ cosα.
Or, 144 = P2 + Q2 +
2PQ(-P/Q)
Or, 144 = Q2 – P2
Or, 144 = (Q + P)(Q – P).
Or, 144 = 18(Q – P)
So, Q – P = 8 ….(ii).
Adding (i) and (ii),
2Q = 26
So, Q = 13.
From(i) P + 13 = 18
So, P = 5.
So, P = 5N, Q = 13N.
10) Two forces of
magnitude 3P, 2P respectively have a resultant R. If the first force be
doubled, the magnitude of the resultant is doubled. Find the angle between the
forces.
Solution:
R2 = (3P)2 + (2P)2 +
2.3P.2Pcosα = 9P2 + 4P2 + 12P2.cosα
= 13P2 + 12P2.cosα …(i)
Again (2R)2 = (6P)2 + (2P)2 +
2.6P.2P.cosα
Or, 4R2 = 36P2 + 4P2 +
24P2cosα.
Or, 4(13P2 + 12P2.cosα) = 36P2 +
4P2 + 24P2cosα [From (i)].
Or, 52P2 + 48P2.cosα = 40P2 +
24P2.cosα.
Or, 24P2.cosα = -12P2.
Or, cosα = $ - \frac{1}{2}$.
So, α= 120°.
11. The resultant of
two forces P and Q is equal to √3Q and making an angle of 30° with the
direction of P; show that P is either equal to Q or is double of Q.
Solution:
If OA and OB represent the forces P and Q, then the diagonal
OC of the parallelogram OACB represent the resultant $\sqrt 3 $Q.
By given, $\angle $AOC = 30°.
Because AC and OB are equal and parallel so, AC represents
Q.
Using cosine law,
Or, cos 30° = $\frac{{{\rm{O}}{{\rm{A}}^2} +
{\rm{O}}{{\rm{C}}^2} - {\rm{A}}{{\rm{C}}^2}}}{{2.{\rm{OA}}.{\rm{OC}}}}$
Or, $\frac{{\sqrt 3 }}{2}$ = $\frac{{{{\rm{P}}^2} +
3{{\rm{Q}}^2} - {{\rm{Q}}^2}}}{{2{\rm{p}}.\sqrt 3 {\rm{Q}}}}$.
Or, P2 + 2Q2 = 3PQ.
Or, P2 – 3PQ + 2Q2 = 0.
Or, (P – Q)(P – 2Q) = 0
Either, P – Q = 0
SO, P = Q.
Or, P – 2Q = 0
So, P = 2Q.
So, P = Q or 2Q.
12. The resultant of
two forces P and Q acting at an angle α
is equal to (2m+1) $\sqrt {{P^2} + {Q^2}} $. When they act at an angle (90°-α) the resultant is (2m-1$\sqrt {{P^2}
+ {Q^2}} $ Prove that:
\[\tan \alpha = \frac{{m - 1}}{{m + 1}}\]
Solution:
${\left\{ {\left( {2{\rm{m}} + 1} \right)\sqrt {{{\rm{P}}^2}
+ {{\rm{Q}}^2}} } \right\}^2}$ = P2 + Q2 +
2PQ.cosα
Or, (2m + 1)2(P2 + Q2)
– (P2 + Q2) = 2PQ.cosα.
Or, (P2 + Q2){(2m + 1)2 –
1} = 2PQ.cosα
Or, (P2 + Q2)(4m2 +
4m) = 2PQcosα.
Or, (P2 + Q2).4m(m + 1) =
2PQ.cosα …(i)
Again,
Or, ${\left\{ {\left( {2{\rm{m}} - 1} \right)\sqrt
{{{\rm{P}}^2} + {{\rm{Q}}^2}} } \right\}^2}$ = P2 + Q2 +
2PQ.cos(90° - α).
Or, (2m – 1)2(P2 + Q2)
– (P2 + Q2) = 2PQsinα.
Or, (P2 + Q2){(2m – 1)2 –
1} = 2PQ.sinα.
Or, (P2 + Q2)(4m2 –
4m) = 2PQ.sinα.
Or, (P2 + Q2)4m(m – 1) = 2PQsinα
…(Ii)
From (i) and (ii)
Or, $\frac{{2{\rm{PQ}}.{\rm{sin}}\alpha
}}{{2{\rm{PQcos}}\alpha }}$ = $\frac{{\left( {{{\rm{P}}^2} + {{\rm{Q}}^2}}
\right)4{\rm{m}}\left( {{\rm{m}} - 1} \right)}}{{\left( {{{\rm{P}}^2} +
{{\rm{Q}}^2}} \right)4{\rm{m}}\left( {{\rm{m}} + 1} \right)}}$
tan α = $\frac{{{\rm{m}} - 1}}{{{\rm{m}} + 1}}$.
13. Two forces P and
Q acting at a point have a resultant R. If Q be doubled, R is doubled and if Q
is reversed in direction, R is again doubled. Show that P : Q : R = √2 : √3 :
√2.
Solution:
R2 = P2 + Q2 +
2PQcosα ….(i)
Or, (2R)2 = P2 +(2Q)2 +
2.P.2Q.cosα.
Or, 4R2 = P2 + 4Q2 +
4PQ.cosα ….(ii)
Again, (2R)2 = P2 + Q2 +
2PQ. Cos(π – α).
Or, 4R2 = P2 + Q2 –
2PQcosα ….(iii)
Adding (i) and (iii),
Or, 5R2 = 2P2 + 2Q2
Or, 2P2 + 2Q2 – 5R2 =
0 ….(iv)
Multiplying (iii) by 2 and then adding with (ii),
Or, 12R2 = 3P2 + 6Q2
Or, P2 + 2Q2 – 4R2 =
0 ….(v)
From (iv) and (v)
Or, $\frac{{{{\rm{P}}^2}}}{{ - 8 + 10}}$ =
$\frac{{{{\rm{Q}}^2}}}{{ - 5 + 8}}$ = $\frac{{{{\rm{R}}^2}}}{{4 - 2}}$.
Or, $\frac{{{{\rm{P}}^2}}}{2} = \frac{{{{\rm{Q}}^2}}}{3} =
\frac{{{{\rm{R}}^2}}}{2}$
Or, $\frac{{\rm{P}}}{{\sqrt 2 }} = \frac{{\rm{Q}}}{{\sqrt 3
}} = \frac{{\rm{R}}}{{\sqrt 2 }}$
So, P:Q:R = $\sqrt 2 :\sqrt 3 :\sqrt 2 $.