Exercise 21.3
1) Three forces
acting on a particle are in equilibrium, the angle between the first and second
is 90° and that between the second and third is 120° find the ratio of the
forces
Solution:
Let P,Q and R be the forces acting at O. The angle between
third and first = 360° - 90° = 150°.
Using sine law,
Or, $\frac{{\rm{P}}}{{{\rm{sin}}120\infty }}$ =
$\frac{{\rm{Q}}}{{{\rm{sin}}150\infty }}$ =
$\frac{{\rm{R}}}{{{\rm{sin}}90\infty }}$
Or, $\frac{{\rm{P}}}{{\frac{{\sqrt 3 }}{2}}}$ =
$\frac{{\rm{Q}}}{{\frac{1}{2}}}$ = $\frac{{\rm{R}}}{1}$.
Or, $\frac{{\rm{P}}}{{\sqrt 3 }}$ = $\frac{{\rm{Q}}}{1}$ =
$\frac{{\rm{R}}}{2}$
So, P:Q:R = $\sqrt 3 $:1:2.
2) The sides AB and
AC of a triangle ABC are bisected in D and E, show that the resultant of forces
represented by BE and DC is represented in magnitude and direction by
$\frac{3}{2}\overrightarrow {{\rm{BC}}} $.
Solution:
Using vector addition,
Or,${\rm{\: }}\overrightarrow {{\rm{BE}}} $ =
$\overrightarrow {{\rm{BC}}} + \overrightarrow {{\rm{CE}}} $
= $\overrightarrow {{\rm{BC}}} +
\frac{1}{2}\overrightarrow {{\rm{CA}}} $ ….(i)
Or, $\overrightarrow {{\rm{DC}}} $ = $\overrightarrow
{{\rm{DB}}} + \overrightarrow {{\rm{BC}}} $
= $\frac{1}{2}\overrightarrow {{\rm{AB}}} +
\overrightarrow {{\rm{BC}}} $ ….(ii)
Adding (i) and (ii)
Or, $\overrightarrow {{\rm{BE}}} + \overrightarrow
{{\rm{DC}}} $ = 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow
{{\rm{CA}}} $ + $\frac{1}{2}\overrightarrow {{\rm{AB}}} $ = 2$\overrightarrow
{{\rm{BC}}} $ + $\frac{1}{2}$($\overrightarrow {{\rm{CA}}} $ + $\overrightarrow
{{\rm{AB}}} $).
= 2$\overrightarrow {{\rm{BC}}} $ +
$\frac{1}{2}\overrightarrow {{\rm{CB}}} $ = 2$\overrightarrow {{\rm{BC}}} $ +
$\frac{1}{2}$($\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{AB}}} $).
= 2$\overrightarrow {{\rm{BC}}} $ +
$\frac{1}{2}\overrightarrow {{\rm{CB}}} $ = 2$\overrightarrow {{\rm{BC}}} $ –
$\frac{1}{2}\overrightarrow {{\rm{BC}}} $ = $\frac{3}{2}\overrightarrow
{{\rm{BC}}} $.
3) Find a point
within a quadrilateral such that, if it be acted on by forces represented by
the lines joining it to the angular points of the quadrilateral, it will be in
equilibrium.
Solution:
Let O be a point within the quadrilateral ABCD such that,
Or, $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow
{{\rm{OB}}} $ + $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow {{\rm{OD}}} $
= 0
Or $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow
{{\rm{OB}}} $ = 2$\overrightarrow {{\rm{OM}}} $ ….(i)
Where M is the middle point of AB,
Again, $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow
{{\rm{OD}}} $ = 2$\overrightarrow {{\rm{ON}}} $ …(ii)
Where N is the middle point of CD.
From (i) amd (ii)
Or, 2$\overrightarrow {{\rm{OM}}} $ + 2$\overrightarrow
{{\rm{ON}}} $ = $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow {{\rm{OB}}} $
+ $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow {{\rm{OD}}} $
Or, 2$\overrightarrow {{\rm{OM}}} $ + 2$\overrightarrow
{{\rm{ON}}} $ = 0
So, $\overrightarrow {{\rm{OM}}} + \overrightarrow {{\rm{ON}}}
$ = 0
Ie. $\overrightarrow {{\rm{OM}}} $ and $\overrightarrow
{{\rm{ON}}} $ are equal and opposite.
So, O is the middle point of MN.
Similarly, we can show that O is the middle point of PQ.
So, O is the point of intersection of the line joining the
middle points of the opposite sides of a quadrilateral.
4) The sides BC and
DA of a quadrilateral ABCD are bisected in F and H respectively, show that if
two forces parallel and equal to AB and DC act on a particle, then the
resultant is parallel to HF and equal to 2 HF.
Solution:
Or, $\overrightarrow {{\rm{AB}}} $ = $\overrightarrow
{{\rm{AF}}} + {\rm{\: }}\overrightarrow {{\rm{FB}}} $.
= $\overrightarrow {{\rm{AH}}} + \overrightarrow
{{\rm{HF}}} + \overrightarrow {{\rm{FB}}} $ ….(I)
Or, $\overrightarrow {{\rm{DC}}} $ = $\overrightarrow
{{\rm{DF}}} + \overrightarrow {{\rm{FC}}} $.
= $\overrightarrow {{\rm{DH}}} $+ $\overrightarrow
{{\rm{HF}}} $ + $\overrightarrow {{\rm{FC}}} $. ….(ii)
Adding (i) and (ii),
Or, $\overrightarrow {{\rm{AB}}} $ + $\overrightarrow
{{\rm{DC}}} $ = $\left( {\overrightarrow {{\rm{AH}}} + \overrightarrow
{{\rm{DH}}} } \right)$ + 2$\overrightarrow {{\rm{HF}}} $ – ($\overrightarrow
{{\rm{FB}}} $ + $\overrightarrow {{\rm{FC}}} $) = 0 + 2.${\rm{\:
}}\overrightarrow {{\rm{HF}}} $ + 0
= 2$\overrightarrow {{\rm{HF}}} $ (So, $\overrightarrow
{{\rm{AH}}} $ and $\overrightarrow {{\rm{DH}}} $ are equal and opposite etc.).
5) A heavy chain has
weights of 10 and 16 kg attached to its ends and hangs in equilibrium over a
smooth pulley if the greatest tension of the chain is 20 kg wt., find the
weight of the chain.
Solution:
Let A and B ne the ends of the chain to which the weight of
10kgs, and 16kgs are attached and C be the highest point of the chain on the
pulley. As,20kgs is the greatest tension of the chain,
So,
Weight of AC + 10kgs = 20kgx
And Weight of BC + 16kgs = 20kgs
Adding we get,
Weight of (AC + BC) + 26 = 40.
Or, Weight of chain = 40 – 26 = 14kgs.
6) Two men carry a
weight 50N between two strings fixed to the weight one string is inclined at
30° to the vertical and the other at 60", find the tension of each string.
Solution:
Let OA and OB be two strings inclined at an angle 30° and
60° with the vertical CO respectively and T1 and T2 be
the tensions along OA and OB respectively. The weight 50N is vertically
downwards from O.
Now, by Lami’s theorem, we have,
Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {{\rm{BOC}}}
\right)}}$ = $\frac{{{{\rm{T}}_2}}}{{\sin \left( {{\rm{COA}}} \right)}}$ =
$\frac{{50}}{{\sin \left( {90\infty } \right)}}$.
Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{sin}}120\infty }}$ =
$\frac{{{{\rm{T}}_2}}}{{{\rm{sin}}150\infty }}$ = $\frac{{50}}{1}$.
Or, $\frac{{{{\rm{T}}_1}}}{{\frac{{\sqrt 3 }}{2}}}$ =
$\frac{{{{\rm{T}}_2}}}{{\frac{1}{2}}}$ = 50,
So, T1 = 50 * $\frac{{\sqrt 3 }}{2}$ =
25$\sqrt 3 $. N.
And T2 = 50 * $\frac{1}{2}$ = 25N.
7) A body weighing 4
N is supported by a string attached to a fixed point and is pulled from the
vertical by a horizontal force of 3 N. Find the angle the string will make with
the vertical and the tension of the string.
Solution:
Let $\angle $AOB = α. Let T be the tension of the sting,
Using Lami’s theorem,
Or, $\frac{{\rm{T}}}{{{\rm{sin}}90\infty }}$ =
$\frac{3}{{\sin \left( {180\infty - \alpha } \right)}}$ = $\frac{4}{{\sin
\left( {90\infty + \alpha } \right)}}$.
Or, $\frac{{\rm{T}}}{1}$ = $\frac{3}{{{\rm{sin}}\alpha }}$ =
$\frac{4}{{{\rm{cos}}\alpha }}$
So, tanα= $\frac{3}{4}$.
i.e. sinα = $\frac{3}{5}$
or, α= sin-1$\left( {\frac{3}{5}} \right)$.
T = $\frac{3}{{{\rm{sin}}\alpha }}$ =
$\frac{3}{{\frac{3}{5}}}$ = 5N.
8) A body of weight
65 N is suspended by two strings of lengths 5 and 12 m attached to two points
in the same horizontal line whose distance apart is 13m; find the tensions of
the strings.
Solution:
OA = 5m, OB = 12m, AB = 13m
OA2 + OB2 = 25 + 144.
= 169 = (13)2
= AB2
So, $\angle $AOB = 90°.
Let $\angle $OBA = θ,
Then, $\angle $BOC = 90° - θ.
And $\angle $AOC = θ
Let T1and T2 be the tensions of
the strings OA and OB respectively,
Using Lami’s theorem.
Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {180\infty -
90\infty + \theta } \right)}}$ = $\frac{{{{\rm{T}}_2}}}{{\sin \left(
{180\infty - \theta } \right)}}$ = $\frac{{65}}{{{\rm{sin}}90\infty }}$
Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{cos}}\theta }}$ =
$\frac{{{{\rm{T}}_2}}}{{{\rm{sin}}\theta }}$ = $\frac{{65}}{1}$.
So, T1 = 65.cosθ = 65 * $\frac{{12}}{{13}}$
= 60N.
T2 = 65sinθ = 65 * $\frac{5}{{13}}$ = 25N.
9) The ends of an
inelastic and weightless string 0.17 m long are attached to two points 0.13 m
apart in the same horizontal line and a weight of 4 N is attached to string
0.05 m from one end. Find the tension in each portion of the string.
Solution:
OA = 0.05m, OB = 0.12m
AB = 0.13m
OA2 + OB2 = (5cm)2 +
(12cm)2
= 25 + 144.
= 169 = (13cm)2 = AB2
So, $\angle $ AOB = 90°.
If $\angle $OBC = θ, then $\angle $BOC = 90° - θ.
And $\angle $AOC = θ.
Let T1 and T2 be the
tensions of the strings OA and OB.
Using Lami’s theorem,
Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {180\infty -
90\infty + \theta } \right)}} = \frac{{{{\rm{T}}_2}}}{{\sin \left(
{180\infty - \theta } \right)}} = \frac{4}{{{\rm{sin}}90\infty }}$.
Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{cos}}\theta }} =
\frac{{{{\rm{T}}_2}}}{{{\rm{sin}}\theta }} = \frac{4}{1}$.
So, T1 = 4cosθ = 4 * $\frac{{12}}{{13}}$ =
$\frac{{48}}{{13}}$N = 3.69N
T2 = 4sinθ = 4 * $\frac{5}{{13}}$ =
$\frac{{20}}{{13}}$N = 1.54N.
10) A uniform sphere
of weight 3 N rests in contact with a smooth vertical wall. It is supported by
a string whose length equals the radius of the sphere, joining a point on the surface
of the sphere to a point of the wall. Calculate the tension in the string and
the reaction of the wall.
Solution:
A is the point of contact of the sphere and the vertical
wall. String BC = the radius OA = OB and $\angle $OAC = 90°.
So, OAB is an equilateral triangle,
So, $\angle $AOB = 60°. [OB = BC and $\angle
$OAC = 90°]
Let R be the normal reaction. The weight is vertical. Let T
be the tension on the string,
Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{sin}}90\infty }} =
\frac{{\rm{R}}}{{{\rm{sin}}150\infty }} = \frac{3}{{{\rm{sin}}120\infty }}$
Or, $\frac{{{{\rm{T}}_1}}}{1} =
\frac{{\rm{R}}}{{\frac{1}{2}}} = \frac{3}{{\frac{{\sqrt 3 }}{2}}}$.
So, T1 = 2$\sqrt 3 $N = 2 * 1.73N = 3.46N.
R = $\sqrt 3 $N = 1.73N.
11) Forces P, Q, R
acting along OA, OB, OC where O is the circumcenter of the triangle ABC, are in
equilibrium, show that
Solution:
Or, $\angle $BOC = 2A, $\angle $COA = 2B, and $\angle $AOB =
2C. [O is the centre of circum circle ABC]
Using Lami’s theorem,
(i) $\frac{{\rm{P}}}{{{\rm{sin}}\angle {\rm{BOC}}}}$ =
$\frac{{\rm{Q}}}{{{\rm{sin}}\angle {\rm{COA}}}}$ =
$\frac{{\rm{R}}}{{{\rm{sin}}\angle {\rm{AOB}}}}$.
Or, $\frac{{\rm{P}}}{{{\rm{sin}}2{\rm{A}}}} =
\frac{{\rm{Q}}}{{{\rm{sin}}2{\rm{B}}}} =
\frac{{\rm{R}}}{{{\rm{sin}}2{\rm{C}}}}$.
Or, $\frac{{\rm{P}}}{{2{\rm{sinA}}.{\rm{cosA}}}}$ =
$\frac{{\rm{Q}}}{{2{\rm{sinB}}.{\rm{cosB}}}}$ =
$\frac{{\rm{R}}}{{2{\rm{sinC}}.{\rm{cosB}}}}$
Or, $\frac{{\rm{P}}}{{{\rm{acosA}}}} =
\frac{{\rm{Q}}}{{{\rm{bcosB}}}} = \frac{{\rm{R}}}{{{\rm{ccosC}}}}$$\left[
{\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}} = 2{\rm{R}}} \right]$
(ii) $\frac{{\rm{P}}}{{{\rm{acosA}}}} =
\frac{{\rm{Q}}}{{{\rm{bcosB}}}} = \frac{{\rm{R}}}{{{\rm{ccosC}}}}$.
Or, $\frac{{\rm{P}}}{{\frac{{{\rm{a}}\left( {{{\rm{b}}^2} +
{{\rm{c}}^2} - {{\rm{a}}^2}} \right)}}{{2{\rm{bc}}}}}} =
\frac{{\rm{Q}}}{{\frac{{{\rm{b}}\left( {{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}} \right)}}{{2{\rm{ca}}}}}} =
\frac{{\rm{R}}}{{\frac{{{\rm{c}}\left( {{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}} \right)}}{{2{\rm{ab}}}}}}$
Or, $\frac{{\rm{P}}}{{{{\rm{a}}^2}\left( {{{\rm{b}}^2} +
{{\rm{c}}^2} - {{\rm{a}}^2}} \right)}} = \frac{{\rm{Q}}}{{{{\rm{b}}^2}\left(
{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}} \right)}} = \frac{{\rm{R}}}{{{{\rm{c}}^2}\left(
{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}} \right)}}$.
12) O is the
orthocentre of the triangle ABC. Forces P, Q, R acting along OA, OB, OC are in
equilibrium. Prove that: $\frac{{\rm{P}}}{{{\rm{BC}}}} =
\frac{{\rm{Q}}}{{{\rm{CA}}}} = \frac{{\rm{R}}}{{{\rm{AB}}}}$.
Solution:
Or, $\angle $CBF = 90°- C.
Or, $\angle $BCF = 90° - B.
From triangle BOC,
So, 90° - C + 90° - B + $\angle $BOC = 180°.
So, $\angle $BOC = B + C = 180° - A.
Similarly, $\angle $COA = 180° - B.
And $\angle $AOD = 180° - C.
Using lami’s theorem,
Or, $\frac{{\rm{P}}}{{\sin \left( {180\infty -
{\rm{A}}} \right)}} = \frac{{\rm{Q}}}{{\sin \left( {180\infty - {\rm{B}}}
\right)}} = \frac{{\rm{R}}}{{\sin \left( {180\infty - {\rm{C}}}
\right)}}$.
Or, $\frac{{\rm{P}}}{{{\rm{sinA}}}} =
\frac{{\rm{Q}}}{{{\rm{sinB}}}} = \frac{{\rm{R}}}{{{\rm{sinC}}}}$.
Or, $\frac{{\rm{P}}}{{\rm{a}}} = \frac{{\rm{Q}}}{{\rm{b}}} =
\frac{{\rm{R}}}{{\rm{c}}}$.
Or, $\frac{{\rm{P}}}{{{\rm{BC}}}} =
\frac{{\rm{Q}}}{{{\rm{CA}}}} = \frac{{\rm{R}}}{{{\rm{AB}}}}$.
13) 13 ABC is a
triangle and D, E, F are the middle points of the sides BC, CA, AB
respectively. Show that the forces represented by the straight lines AD, BE, CF
acting at a point are in equilibrium.
Solution:
Or, $\overrightarrow {{\rm{AD}}} $ = $\overrightarrow
{{\rm{AB}}} + \overrightarrow {{\rm{BD}}} $ = $\overrightarrow
{{\rm{AB}}} $ + $\frac{1}{2}\overrightarrow {{\rm{BC}}} $.
Or, $\overrightarrow {{\rm{BE}}} $ = $\overrightarrow
{{\rm{BC}}} + \overrightarrow {{\rm{CE}}} $ = $\overrightarrow
{{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CA}}} $.
Or, $\overrightarrow {{\rm{CF}}} $ = $\overrightarrow
{{\rm{CA}}} $ + $\overrightarrow {{\rm{AF}}} $ = $\overrightarrow {{\rm{CA}}} $
+ $\frac{1}{2}\overrightarrow {{\rm{AB}}} $.
Adding,
Or, $\overrightarrow {{\rm{AD}}} $ + $\overrightarrow
{{\rm{BE}}} $ + $\overrightarrow {{\rm{CF}}} $ = $\overrightarrow {{\rm{AB}}} $
+ $\frac{1}{2}\overrightarrow {{\rm{BC}}} $ + $\overrightarrow {{\rm{BC}}} $ +
$\frac{1}{2}\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{CA}}} $ +
$\frac{1}{2}\overrightarrow {{\rm{AB}}} $.
= $\frac{1}{2}\left( {\overrightarrow {{\rm{AB}}} +
\overrightarrow {{\rm{BC}}} + \overrightarrow {{\rm{CA}}} } \right)$ =
$\frac{3}{2}\left( {\overrightarrow {{\rm{AC}}} + \overrightarrow
{{\rm{CA}}} } \right)$ = 0.
So, the forces represented by AD,BE and CF are in
equilibrium.
14) A body of weight
20 N, which hangs by a string is pushed to one side by a horizontal force so
that the string makes an angle of 60° with the vertical, find the horizontal
force and the tension of the string.
Solution:
Or, $\angle $AOB = 60°.
Let P be the horizontal force and T be the tension of the
string,
Using Lami’s theorem,
Or, $\frac{{\rm{P}}}{{{\rm{sin}}120\infty }}$ =
$\frac{{\rm{T}}}{{{\rm{sin}}90\infty }}$ = $\frac{{20}}{{{\rm{sin}}150\infty
}}$.
Or, $\frac{{\rm{P}}}{{\frac{{\sqrt 3 }}{2}}}$ =
$\frac{{\rm{T}}}{1}$ = $\frac{{20}}{{\frac{1}{2}}}$.
Or, $\frac{{2{\rm{P}}}}{{\sqrt 3 }}$ = $\frac{{\rm{T}}}{1}$
= 40.
So, P = 20$\sqrt 3 $N, T = 40N.
15) A heavy chain of
length 9m and weighing 18 N has a weight of 6 N attached to one end is in
equilibrium hanging over a smooth peg. What length of the chain is on each
side?
Solution:
Total length of the chain = 9m, AB = xm.
Length of the part of the chain AC = (9 – x)m
Total wt. of the chain = 18N.
Wt. of chain of length 1m = $\frac{{18}}{9}$ = 2N.
Wt. of chain of length xm = 2x.
Wt.of chain of length (9 – x)m = 2(9 – x).
By the question,
Or, 6 + 2x = 2(9 – x).
Or, 6 + 2x = 18 – 2x.
Or, 4x = 12.
So, x = 3m.
Length AB = xm = 3m, Length AC = (9 – x) = 6m.
16) A uniform plane
lamina in the form of a rhombus, one of whose angles is 120°, is supported by
two forces applied at the centre in the directions of the diagonals so that one
side of the rhombus is horizontal, show that if P and Q be the forces and P be
the greater. then P² = 3Q2.
Solution:
ABCD is a rhombus with diagonals AC and BD intersecting O.
Or, $\angle $ABC = 120°, $\angle $BAD = 60°.
Let W be the weight of the rhombus. Along the diagonals AC
and BD forces are applied so that AB is horizontal. WMN is vertical,
Or, $\angle $OBA = 60°.
So, $\angle $BOM = vert. opp $\angle $DON = 30°.
Similarly, $\angle $AOM = vert, opp $\angle $CON = 60°.
So, $\angle $DON <$\angle $CON, the greater force P must
be along BD and Q along AC.
Or, $\frac{{\rm{P}}}{{\sin \left( {90\infty + 30\infty
} \right)}}$ = $\frac{{\rm{Q}}}{{\sin \left( {90\infty + 60\infty }
\right)}}$.
Or, sin150°.P = Q.sin120°.
Or, $\frac{1}{2}$.P = Q.$\frac{{\sqrt 3 }}{2}$.
So, P2 = 3Q2