Composition and Resolution of Concurrent Force Exercise 21.2 | Basic Mathematics Solution [NEB UPDATED]

Exercise 21.2

1) A force equal to 10 N is inclined at an angle of 30° to the horizontal; find its resolved parts in a horizontal and vertical directions.

Solution

F = 10N, α= 30°.

P = Fcosα = 10.cos30° = 10 * $\frac{{\sqrt 3 }}{2}$ = 5$\sqrt 3 $N.

Q = F.sinα = 10.sin30° = 10 * $\frac{1}{2}$ = 5N.

 

2) Resolve a force equal to 50 N into two forces making angles of 60° and 45° with it an opposite sides.

Solution

R = 50N, α= 60°, β = 45°.

P = $\frac{{{\rm{Rsin}}\beta }}{{\sin \left( {\alpha  + \beta } \right)}}$ = $\frac{{50{\rm{sin}}45\infty }}{{{\rm{sin}}105\infty }}$ = $\frac{{50{\rm{*}}\frac{1}{{\sqrt 2 }}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}}$ = $\frac{{100}}{{\sqrt 3  + 1}}$ * $\frac{{\sqrt 3  - 1}}{{\sqrt 3  - 1}}$ = 50$\left( {\sqrt 3  - 1} \right)$N.

Q = $\frac{{{\rm{Rsin}}\alpha }}{{\sin \left( {\alpha  + \beta } \right)}}$ = $\frac{{50{\rm{sin}}60\infty }}{{{\rm{sin}}105\infty }}$ = $\frac{{50{\rm{*}}\frac{{\sqrt 3 }}{2}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}}$ = $\frac{{50\sqrt 6 }}{{\sqrt 3  + 1}}$ = $\frac{{50\sqrt 6 \left( {\sqrt 3  - 1} \right)}}{2}$ = 25$\left( {3\sqrt 2  - \sqrt 6 } \right)$N.

3) If a force P be resolved into two forces making angles of 45° and 15° with its direction. Show that the latter force is $\frac{{\sqrt {6} }}{3}$P.

Solution

R = P, α= 45°, β = 15°.

Q = $\frac{{{\rm{Rsin}}\alpha }}{{\sin \left( {\alpha  + \beta } \right)}}$ = $\frac{{{\rm{Psin}}45\infty }}{{{\rm{sin}}60\infty }}$ = $\frac{{{\rm{P*}}\frac{1}{{\sqrt 2 }}}}{{\frac{{\sqrt 3 }}{2}}}$ = $\frac{{2{\rm{P}}}}{{\sqrt 6 }}$ = $\frac{{2\sqrt 6 }}{{\sqrt 6 }}$P = $\frac{{\sqrt 6 }}{3}$P.

4) A force of 20 N acting vertically upwards is resolved into two forces one being horizontal and equal to 10 N. What is the magnitude and direction of the other force?

Solution

P = 10N, R = 20N, θ= 90°, Q = ?.

tanθ = $\frac{{{\rm{Qsin}}\alpha }}{{{\rm{P}} + {\rm{Q}}.{\rm{sin}}\alpha }}$

tan90° = $\frac{{{\rm{Qsin}}\alpha }}{{10 + {\rm{Qcos}}\alpha }}$.

∞ = $\frac{{{\rm{Qsin}}\alpha }}{{10 + {\rm{Qcos}}\alpha }}$.

So, cosα = $ - \frac{{10}}{{\rm{Q}}}$.

R2 = P2 + Q2 + 2PQcosα.

Or, (20)2 = (10)2 + Q2 + 2.10.Q$\left( { - \frac{{10}}{{\rm{Q}}}} \right)$.

Or, 400 = 100 + Q2 – 200

Or, Q2 = 500,

So, Q = 10$\sqrt 5 $N.

If β be the angle made by Q with vertical line:

Or, R2 = P2 + Q2 + 2PQcos(90° + β).

Or, 400 = 100 + 500 + 2.10.10$\sqrt 5 $ (-sinβ)

Or, - 200 = - 200$\sqrt 5 $sinβ.

So, sinβ = $\frac{1}{{\sqrt 5 }}$.

Cosβ = $\sqrt {1 - \frac{1}{5}} $ = $\frac{2}{{\sqrt 5 }}$.

Tanβ = $\frac{{\frac{1}{{\sqrt 5 }}}}{{2\sqrt 5 }}$ = $\frac{1}{2}$.

So, β = tan-1$\left( {\frac{1}{2}} \right)$.

5) A particle is acted upon by three forces, in one plane, equal to 2, 2√2 and 1 newton respectively. The first is horizontal, the second acts at 45° to the horizon, and the third is vertical. Find their resultant.

Solution

Resolving the forces along and perpendicular to OA,

Or, X = 2cos0° + 2$\sqrt 2 $ cos45° + 1.cos90°

= 2.1 + 2$\sqrt 2 $.$\frac{1}{{\sqrt 2 }}$ + 0 = 4.

Y = 2sin0° + 2$\sqrt 2 $ sin45° + 1.sin90°.

= 0 + 2$\sqrt 2 $. $\frac{1}{{\sqrt 2 }}{\rm{\: }}$ + 1 = 3.

R = $\sqrt {{{\rm{X}}^2} + {{\rm{Y}}^2}} $ = $\sqrt {16 + 9} $ = 5N.

Tanθ = $\frac{{\rm{Y}}}{{\rm{X}}}$ = $\frac{3}{4}$.

So, θ = tan-1$\left( {\frac{3}{4}} \right)$.

6. Forces 1 N, 2 N and 3 N act at a point in direction parallel to the side of an equilateral triangle taken in order. Find their resultant.

Solution

Resolving forces along and perpendicular to BC,

X = 1.cos0° + 2.cos120° + 3.cos240°.

= 1 + 2.$\left( { - \frac{1}{2}} \right)$ + 3.$\left( { - \frac{1}{2}} \right)$ = 1 – 1 – $\frac{3}{2}$ = $ - \frac{3}{2}$.

Y = 1.sin0° + 2.sin120° + 3.cos240°.

= 0 + 2.$\frac{{\sqrt 3 }}{2}$ + 3.$\left( { - \frac{{\sqrt 3 }}{2}} \right)$ = $ - \frac{{\sqrt 3 }}{2}$.

R = $\sqrt {{{\rm{X}}^2} + {{\rm{Y}}^2}} $ = $\sqrt {\frac{9}{4} + \frac{3}{4}} $ = $\sqrt 3 $N.

Tanθ = $\frac{{\rm{Y}}}{{\rm{X}}}$ = $\frac{{ - \frac{{\sqrt 3 }}{2}}}{{ - \frac{3}{2}}}$ = $\frac{1}{{\sqrt 3 }}$.

So, θ = 180° + 30° = 210°.

The angle made by the resultant second force = 210° - 120°= 90°.

7. ABCD is a square. Forces 1, 2, 3, 4 and 2√2 newton act at a point in directions AB, BC. CD, DA and AC. Find the resultant.

Solution

Resolving the forces along and perpendicular to AB,

X = 1cos0° +2.cos90° + 3cos180° + 4cos270° + 2$\sqrt 2 $cos45°.

= 1.1 + 0 + 3.(-1) + 4.0 + 2$\sqrt 2 $ .$\left( {\frac{1}{{\sqrt 2 }}} \right)$ = 1 – 3 + 2 = 0

Y = 1sin0° + 2sin90° + 3sin180° + 4sin270° + $2\sqrt 2 $sin45°.

= 0 + 2.1 + 3.0 + 4.(-1) + 2$\sqrt 2 $ .$\frac{1}{{\sqrt 2 }}$ = 2 – 4 + 2 = 0

R = $\sqrt {{{\rm{X}}^2} + {{\rm{Y}}^2}} $ = 0

So, forces are in equilibrium.

8. Forces of 2, √3, 5, √3 and 2 newton respectively act at one of the angular points of a regular hexagon towards the five other points. Find the magnitude and direction of the resultant.

Solution

Resolving the forces along and perpendicular to AB.
X = 2cos0° + $\sqrt 3 $cos30° + 5.cos60° + $\sqrt 3 $cos90° + 2.cos120°.

= 2.1 + $\sqrt 3 $.$\frac{{\sqrt 3 }}{2}$ + 5.$\frac{1}{2}$ + $\sqrt 3 $.0 + 2.$\left( { - \frac{1}{2}} \right)$.

= 2 + $\frac{3}{2}$ + $\frac{5}{2}$ – 1 = 5.

Y = 2sin0° + $\sqrt 3 $sin30° + 5sin60° + $\sqrt 3 $sin90° + 2sin120°.

= 0 + $\sqrt 3 $.$\frac{1}{2}$ + 5.$\frac{{\sqrt 3 }}{2}$ + $\sqrt 3 $.1 + 2.$\frac{{\sqrt 3 }}{2}$ = 4$\sqrt 3 $.

R = $\sqrt {{{\rm{X}}^2} + {{\rm{Y}}^2}} $ = $\sqrt {25 + 75} $ = 10N

Tanθ = $\frac{{\rm{Y}}}{{\rm{X}}}$ = $\frac{{5\sqrt 3 }}{2}$ = $\sqrt 3 $.

θ = 60°.

Thus, R = 10N towards opposite angular points.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.