Application of Derivative Exercise: 18.2 Class 11 Basic Mathematics Solution [NEB UPDATED]


Exercise 18.2

1. a) A particle moves in a straight line. The distance s covered by the particle in time t is given by s = 2t2 + 5t – 4.

Solution:

Given, s = 2t2 + 5t – 4

Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 4t + 5 and $\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}}$ = 4.

At time(t) = 6 seconds.

Velocity (v) = $\frac{{{\rm{dS}}}}{{{\rm{dt}}}}$ = (4 * 6 + 5) = 29 m/sec.

Acceleration = $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{t}}^2}}}$ = 4m/sec2

b) The displacement of the particle varies with time according to the relation x = – 15t2 + 20t + 3. Find the velocity and the acccleration of the particle in ½ second. The distance is measured in metere and time in second.

Solution:

Given, x = – 15t2 + 20t + 30

Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = – 30t + 20; $\frac{{{{\rm{d}}^2}{\rm{x}}}}{{{\rm{d}}{{\rm{t}}^2}}}$ = –30.

When time (t) = $\frac{1}{2}$ second, velocity $\left( {\frac{{{\rm{dx}}}}{{{\rm{dt}}}}} \right)$ = –30 * $\frac{1}{2}$ + 20 = 5 m/sec.

Acceleration $\left( {\frac{{{{\rm{d}}^2}{\rm{x}}}}{{{\rm{d}}{{\rm{t}}^2}}}} \right)$ = – 30 m/sec2.

 

2. a) The side of a square sheet is increasing at the rate of 5cm/min. At what rate is the area increasing when the side is 12cm long?

Solution:

Let x be the side and A be the area of a sheet at time t.

Given. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 5cm/min., $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = ?

We have, A = x2.

Or, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$

When x = 12cm, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2 * 12 * 5 = 120cm2/mic.

So, the area increasing at the rate 120cm2/min.

b) A stone thrown into a pond produces a circular ripples which expands from the point of impact. If the radius of the ripple increases at the rate of 3.5cm/sec, how fast is the area growing when the radius is 15 cm?

Solution:

Let r be the radius and A be the area of the circular ripples at time t.

Given. $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = 3.5cm/min., $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = ?

We have, A = πr2.

Or, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2πr.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$

When r = 15cm, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2π * 15 * 3.5 = 105 * $\frac{{22}}{7}$ = 330cm2/sec.

 

3. a) From a cylindrical drum containing oil and kept vertical, the oil is leaking so that the level of the oil is decreasing at the rate of 2cm/min. If the radius and the height of the drum is 10.5 cm and 40cm respectively. Find the rate at which the volume of the oil is decreasing.

Solution:

Let r be the radius, h be the height and v the volume of the cylindrical drum at time t.

Given, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = 2cm/min.

r = 10.5cm, h = 40cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = ?

We know, v = πr2h

Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$  [So, r is constant]

Where r = 10.5, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{22}}{7}$ * (10.5)2 * 2 = 693 cm3/min.

So, the volume decreasing at the rate of 693 cm2/min.

b) Water is poured into a right circular cylinder of radius 8cm at the rate of 18cu.cm/min. Find the rate at which the level of water is rising in the cylinder.

Solution:

Let r be the radius, h be the height and v the volume of the volume of the circular cylinder at time t.

Given,

r = 8cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18cu.cm/min. , $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?

We know, v = πr2h

Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$  [So, r is constant]

Where, r = 8cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$= 18 cu.cm/min.

Then, 18 = π * 82 * $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{{18}}{{64{\rm{\pi }}}}$ = $\frac{9}{{32{\rm{\pi }}}}$

So, the level of water rising at the rate of $\frac{9}{{32{\rm{\pi }}}}$ cm/min.

 

c) Gasoline is pumped into a vertical cylindrical tank at the rate of 24cu.cm/min. The radius of the tank is 9cm. How fast is the surface rising?

Solution:

Let r be the radius, h be the height and v the volume of the cylindrical tank at time t.

Given,

$\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 24 cu.cm/min., r = 9cm , $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?

We know, v = πr2h

Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$  [So, r is constant]

Or, 24 = π * 92 * $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.

So, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{8}{{27{\rm{\pi }}}}{\rm{\:}}$ cm./min.

 

4. a) A spherical balloon is inflated at the rate of 18cu.cm/sec. at what rate is the radius is increasing when the radius is 8cm?

Solution:

Let r be the radius, v be the volume of a spherical balloon at time t.

Given, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18 cu.cm/sec, r = 8cm, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = ?

We have, v = $\frac{4}{3}$πr3.

Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{4{\rm{\pi }}}}{3}$.3r2.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.

When $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18 cu.cm/sec and r = 8cm.

Or, 18 = 4π * 82 * $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.

Or, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = $\frac{9}{{128{\rm{\pi }}}}$ cm/sec.

b) A spherical ball of salt is dissolving in water in such a way that the rate of decrease in volume at any instant is proportional to the surface. Prove that the radius is decreasing at the constant rate.

Solution:

Let s be the surface area, r be the radius, v be the volume of the spherical balloon of salt in time t.

We have, v = $\frac{4}{3}$πr3 and s = 4πr2.

Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 4πr2.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.

By question, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = –ks (where k is constant).

Then, – ks = s.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = k.

So, the radius is decreasing at a constant rate.

 

5. a) The radius of the conical tank is 1/3 of the height. Water flows into an inverted conical tank at the rate of 4.4cu.cm/sec. How fast the level is rising when the height of the water is 3.5cm?

Solution:

Let r be the radius, h be the height and v be the volume of the conical tank at time t.

Given, r = $\frac{{\rm{h}}}{3}$, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 4.4 cu.cm./sec.

h = 3.5cm, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?

We have, v = $\frac{1}{3}$πr2h.

v = $\frac{1}{3}$ * π * ${\left( {\frac{{\rm{h}}}{4}} \right)^2}$* h = $\frac{{{\rm{\pi }}{{\rm{h}}^3}}}{{27}}$

or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{3{\rm{\pi }}}}{{27}}$h2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$

When = 3.5cm.

Or, 4.4 = $\frac{{22}}{{7{\rm{*}}9}}$ * (3.5)2 * $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.

Or, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{{4.4{\rm{*}}7{\rm{*}}9}}{{22{\rm{*}}12.25}}$ = $\frac{{277.2}}{{269.5}}$ = $\frac{{2772}}{{2695}}$ = $\frac{{36}}{{35}}$.

So, the level rising at the rate of $\frac{{36}}{{35}}$ cm/sec.

b) Water flows into an inverted conical tank at the rate of 42cm3/sec. When the depth of water is 8cm, how fast the level rising? Assume that the height of the tank is 12cm and the radius of the top is 6cm.

Solution:

Let ABC be the conical water tank into which water is flowing at the rate of 42 cm3/sec. at time t. Let h be the height AE of the water and r be the radius EF of the water surface.

Since, $\Delta $ACD ~$\Delta $AFE. So, $\frac{{{\rm{AE}}}}{{{\rm{AD}}}} = \frac{{{\rm{EF}}}}{{{\rm{DC}}}}$.

Or, $\frac{{\rm{h}}}{{12}}$ = $\frac{{\rm{r}}}{6}$ r = $\frac{{\rm{h}}}{2}$.

Let v be the volume of the water, then,

v = $\frac{1}{3}$ πr2h = $\frac{1}{3}$π$\frac{{{{\rm{h}}^2}}}{4}$.h = $\frac{{{\rm{\pi }}{{\rm{h}}^3}}}{{12}}$.

or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{3{\rm{\pi }}{{\rm{h}}^2}}}{{12}}$.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$

or, 42 = $\frac{{{\rm{\pi }}{{\rm{h}}^2}}}{4}.\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.

When h = 8 cm

Or, 42 = $\frac{{{\rm{\pi *}}{8^2}}}{4}{\rm{*}}\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$

Or, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{{42{\rm{*}}4}}{{64{\rm{\pi }}}}$ = $\frac{{21}}{{81{\rm{\pi }}}}$

So, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{{21}}{{8{\rm{\pi }}}}$ cm./sec.

 

6) If the volume of the expanding cube is increasing at the rate of 24cm3/min, how fast is its surface area increasing when the surface area is 216 cm2?

Solution:

Let v be the volume, s be the surface area x be the side of the cube at time t.

or,s = 216cm2, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = ?

or, 6x2 = 216.

Or, x2 = 36.

So, x = 6.

Given, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 24cm3/min.
We have, v = x3.

So, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 3x2.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.

Or, 24 = 3x2. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$

Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{8}{{{{\rm{x}}^2}}}$

Again, s = 6x2.

Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 12x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 12x * $\frac{8}{{{{\rm{x}}^2}}}$ = $\frac{{96}}{{\rm{x}}}$ = $\frac{{96}}{6}$

So, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 16cm2/min.

 

7) Two concentric circle are expanding in such a way that the radius of the inner circle is increasing at the radius of the inner circle is increasing at the rate of 10cm/sec and that of the outer circle at the rate of 7cm/sec. At a certain time, the radii of the inner and outer circles ate respectively 24cm and 30cm. At what time, the area between the circles increasing or decreasing. How fast?

Solution:

Let r1 and r2 be the radii of two concentric circles s1 and s2respectively and let s be the area between two circle at time t.

Given, $\frac{{{\rm{d}}{{\rm{r}}_1}}}{{{\rm{dt}}}}$ = 10cm/sec., $\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$ = 7cm/sec.

r= 24cm and r2 = 30cm.

s = s– s1 = πr22 – πr12

So, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 2πr2.$\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$ – 2πr1.$\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$.

Where, r1 = 24cm and r2 = 30cm

Then, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = 2π(30 * 7 – 24 * 10) = 2π(–30) = – 60π.

So, they are between two concentric circle decreasing at the rate of 60π cm2/sec.

 

8) A man of height 1.5m walks away from a lamp post of height 4.4m at the rate of 20cm/sec. How fast is the shadow lengthening when the man is 42 cm from the post?

Solution:

Let AB be the lamp, DE on the height of the man, Let E be the position of the man in time t.

Let BE = x, EF = y

Since, $\Delta $ABF ~$\Delta $DEF, then,

Or, $\frac{{{\rm{AB}}}}{{{\rm{DE}}}}$ = $\frac{{{\rm{BF}}}}{{{\rm{EF}}}}$

Or, $\frac{{4.5}}{{1.5}} = \frac{{{\rm{x}} + {\rm{y}}}}{{\rm{y}}}$

Or, x + y = 3y   x = 2y y = $\frac{{\rm{x}}}{2}$.

Given, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 20cm/sec.

Or, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = $\frac{1}{2}.\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{1}{2}$ * 20 cm/sec. = 10 cm/sec.

 

9) A point is moving along the curve y = 2x3 – 3x2 in such a way that its x-coordinate is increasing at the rate of 2cm/sec. Find the rate at which the distance of the point from the origin is increasing when the point is at (2,4).

Solution:

Let P(x,y) be any point along the curve y = 2x3 – 3x2 at time t.

Given, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 2cm/sec. ,(x,y) = (2,4)

Let OP = D.

Then D2 = (x – 0)2 + (y – 0)2 = x2 + y2.

= x2 + (2x3 + 3x2)2

When P is at (2,4), then,

D2 = 22 + (2.23 – 3.22)2 = 4 + (16 – 12)2 = 20.

So, D = $\sqrt {20} $ = 2$\sqrt 5 $.

Or, $\frac{{{\rm{d}}{{\left( {\rm{D}} \right)}^2}}}{{{\rm{dt}}}}$ = 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ + 2(2x3 – 3x2).(6x2 – 6x).$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.

Or, 2D. $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$ = [2.2 + 2(2x3 – 3x2)(6x2 – 6x)]$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.

When (x,y) = (2,4),

Or, 2 * 2$\sqrt 5 $ * $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$ = [2x + 2(2x3 – 3.22)(6.22 – 6.2)]2

Or, 4$\sqrt 5 $.$\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$ = [4 + 2 * 4 * 12]2

Or, $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$ = $\frac{{200}}{{4\sqrt 5 }}$

So, $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$ = 10$\sqrt 5 $ cm/sec.

 

10. a) A kite is 24m high and there are 25 meters of cord out. If the kite moves horizontally at the rate if 36km/hr directly away from the person who is flying it, how fast is the cord out?

Solution:

Let B be the position of the kite moving horizontally in time t.

Let AB = x, OB = s

OB2 = OA2 + AB2

s2 = 242 + x2 …(i)

When s = 25,

Or, 252 = 242 + x2

Or, x2 = 252 – 242 = 625 – 576 = 49

So, x = 7.

From equation(i), 2x. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.

When, s = 25, x = 7, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 36 km/hr

Then, 2 * 25. $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 2 * 7 * 36.

Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = $\frac{{2{\rm{*}}7{\rm{*}}36}}{{2{\rm{*}}25}}$ = 10.08 km/hr.

b) A 2.5m ladder leans against the wall. If the top slides downwards at the rate of 12cm/sec, find the speed of the lower end when it is 2m from the wall.

Solution:

Let AB be the position of the ladder such that:

Let AB = x, OB = y at time t.

Given, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = – 12cm/sec = $ - \frac{{12}}{{100}}$m/sec.

So, x2 + y2 = (2.5)2. ….(i)

When x = 2m.

Or, 22 + y2 = 6.25

Or, y2 = 2.25

So, y = 1.5m

Now, differentiating (i) w.r.t. to time (t),

Or, 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ + 2y.$\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = 0.

Or, 2 * 2$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ + 2 * 1.5 * $\left( { - \frac{{12}}{{100}}} \right)$ = 0      $\left[ {\frac{{{\rm{dy}}}}{{{\rm{dt}}}} =  - \frac{{12}}{{100}}\frac{{\rm{m}}}{{{\rm{sec}}}}} \right]$

Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{{36}}{{100{\rm{*}}4}}$ = $\frac{9}{{100}}$.

So, speed of the lower end $\left( {\frac{{{\rm{dx}}}}{{{\rm{dt}}}}} \right)$ = $\frac{9}{{100}}$ m./sec = 9cm/sec.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.