Exercise 18.2
1. a) A particle
moves in a straight line. The distance s covered by the particle in time t is
given by s = 2t2 + 5t – 4.
Solution:
Given, s = 2t2 + 5t – 4
Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 4t + 5 and
$\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}}$ = 4.
At time(t) = 6 seconds.
Velocity (v) = $\frac{{{\rm{dS}}}}{{{\rm{dt}}}}$ = (4 * 6 +
5) = 29 m/sec.
Acceleration = $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{t}}^2}}}$
= 4m/sec2.
b) The displacement
of the particle varies with time according to the relation x = – 15t2 +
20t + 3. Find the velocity and the acccleration of the particle in ½ second.
The distance is measured in metere and time in second.
Solution:
Given, x = – 15t2 + 20t + 30
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = – 30t + 20;
$\frac{{{{\rm{d}}^2}{\rm{x}}}}{{{\rm{d}}{{\rm{t}}^2}}}$ = –30.
When time (t) = $\frac{1}{2}$ second, velocity $\left(
{\frac{{{\rm{dx}}}}{{{\rm{dt}}}}} \right)$ = –30 * $\frac{1}{2}$ + 20 = 5
m/sec.
Acceleration $\left(
{\frac{{{{\rm{d}}^2}{\rm{x}}}}{{{\rm{d}}{{\rm{t}}^2}}}} \right)$ = – 30 m/sec2.
2. a) The side of a
square sheet is increasing at the rate of 5cm/min. At what rate is the area
increasing when the side is 12cm long?
Solution:
Let x be the side and A be the area of a sheet at time t.
Given. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 5cm/min.,
$\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = ?
We have, A = x2.
Or, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ =
2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$
When x = 12cm, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2 * 12 *
5 = 120cm2/mic.
So, the area increasing at the rate 120cm2/min.
b) A stone thrown into a pond produces a circular ripples which expands
from the point of impact. If the radius of the ripple increases at the rate of
3.5cm/sec, how fast is the area growing when the radius is 15 cm?
Solution:
Let r be the radius and A be the area of the circular
ripples at time t.
Given. $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = 3.5cm/min.,
$\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = ?
We have, A = πr2.
Or, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ =
2πr.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$
When r = 15cm, $\frac{{{\rm{dA}}}}{{{\rm{dt}}}}$ = 2π * 15 *
3.5 = 105 * $\frac{{22}}{7}$ = 330cm2/sec.
3. a) From a cylindrical drum containing oil and kept vertical, the oil
is leaking so that the level of the oil is decreasing at the rate of 2cm/min.
If the radius and the height of the drum is 10.5 cm and 40cm respectively. Find
the rate at which the volume of the oil is decreasing.
Solution:
Let r be the radius, h be the height and v the volume of the
cylindrical drum at time t.
Given, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = 2cm/min.
r = 10.5cm, h = 40cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = ?
We know, v = πr2h
Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
[So, r is constant]
Where r = 10.5, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ =
$\frac{{22}}{7}$ * (10.5)2 * 2 = 693 cm3/min.
So, the volume decreasing at the rate of 693 cm2/min.
b) Water is poured
into a right circular cylinder of radius 8cm at the rate of 18cu.cm/min. Find
the rate at which the level of water is rising in the cylinder.
Solution:
Let r be the radius, h be the height and v the volume of the
volume of the circular cylinder at time t.
Given,
r = 8cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18cu.cm/min. ,
$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?
We know, v = πr2h
Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
[So, r is constant]
Where, r = 8cm, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$= 18
cu.cm/min.
Then, 18 = π * 82 *
$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ ⇒ $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
= $\frac{{18}}{{64{\rm{\pi }}}}$ = $\frac{9}{{32{\rm{\pi }}}}$
So, the level of water rising at the rate of $\frac{9}{{32{\rm{\pi
}}}}$ cm/min.
c) Gasoline is pumped
into a vertical cylindrical tank at the rate of 24cu.cm/min. The radius of the
tank is 9cm. How fast is the surface rising?
Solution:
Let r be the radius, h be the height and v the volume of the
cylindrical tank at time t.
Given,
$\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 24 cu.cm/min., r = 9cm ,
$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?
We know, v = πr2h
Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = πr2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
[So, r is constant]
Or, 24 = π * 92 *
$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.
So, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ =
$\frac{8}{{27{\rm{\pi }}}}{\rm{\:}}$ cm./min.
4. a) A spherical balloon
is inflated at the rate of 18cu.cm/sec. at what rate is the radius is
increasing when the radius is 8cm?
Solution:
Let r be the radius, v be the volume of a spherical balloon
at time t.
Given, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18 cu.cm/sec, r =
8cm, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = ?
We have, v = $\frac{4}{3}$πr3.
Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{4{\rm{\pi
}}}}{3}$.3r2.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.
When $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 18 cu.cm/sec and r
= 8cm.
Or, 18 = 4π * 82 *
$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.
Or, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ =
$\frac{9}{{128{\rm{\pi }}}}$ cm/sec.
b) A spherical ball
of salt is dissolving in water in such a way that the rate of decrease in
volume at any instant is proportional to the surface. Prove that the radius is
decreasing at the constant rate.
Solution:
Let s be the surface area, r be the radius, v be the volume
of the spherical balloon of salt in time t.
We have, v = $\frac{4}{3}$πr3 and s = 4πr2.
Or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 4πr2.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$.
By question, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = –ks (where
k is constant).
Then, – ks = s.$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ ⇒
$\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = –k.
So, the radius is decreasing at a constant rate.
5. a) The radius of the conical tank is 1/3 of the height. Water flows
into an inverted conical tank at the rate of 4.4cu.cm/sec. How fast the level
is rising when the height of the water is 3.5cm?
Solution:
Let r be the radius, h be the height and v be the volume of
the conical tank at time t.
Given, r = $\frac{{\rm{h}}}{3}$,
$\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 4.4 cu.cm./sec.
h = 3.5cm, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = ?
We have, v = $\frac{1}{3}$πr2h.
v = $\frac{1}{3}$ * π * ${\left( {\frac{{\rm{h}}}{4}}
\right)^2}$* h = $\frac{{{\rm{\pi }}{{\rm{h}}^3}}}{{27}}$
or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{3{\rm{\pi
}}}}{{27}}$h2.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
When = 3.5cm.
Or, 4.4 = $\frac{{22}}{{7{\rm{*}}9}}$ * (3.5)2 *
$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.
Or, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ =
$\frac{{4.4{\rm{*}}7{\rm{*}}9}}{{22{\rm{*}}12.25}}$ = $\frac{{277.2}}{{269.5}}$
= $\frac{{2772}}{{2695}}$ = $\frac{{36}}{{35}}$.
So, the level rising at the rate of $\frac{{36}}{{35}}$
cm/sec.
b) Water flows into an inverted conical tank at the rate of 42cm3/sec.
When the depth of water is 8cm, how fast the level rising? Assume that the
height of the tank is 12cm and the radius of the top is 6cm.
Solution:
Let ABC be the conical water tank into which water is
flowing at the rate of 42 cm3/sec. at time t. Let h be the height AE
of the water and r be the radius EF of the water surface.
Since, $\Delta $ACD ~$\Delta $AFE. So,
$\frac{{{\rm{AE}}}}{{{\rm{AD}}}} = \frac{{{\rm{EF}}}}{{{\rm{DC}}}}$.
Or, $\frac{{\rm{h}}}{{12}}$ = $\frac{{\rm{r}}}{6}$ ⇒
r = $\frac{{\rm{h}}}{2}$.
Let v be the volume of the water, then,
v = $\frac{1}{3}$ πr2h =
$\frac{1}{3}$π$\frac{{{{\rm{h}}^2}}}{4}$.h = $\frac{{{\rm{\pi
}}{{\rm{h}}^3}}}{{12}}$.
or, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = $\frac{{3{\rm{\pi
}}{{\rm{h}}^2}}}{{12}}$.$\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
or, 42 = $\frac{{{\rm{\pi
}}{{\rm{h}}^2}}}{4}.\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$.
When h = 8 cm
Or, 42 = $\frac{{{\rm{\pi
*}}{8^2}}}{4}{\rm{*}}\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$
Or, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ =
$\frac{{42{\rm{*}}4}}{{64{\rm{\pi }}}}$ = $\frac{{21}}{{81{\rm{\pi }}}}$
So, $\frac{{{\rm{dh}}}}{{{\rm{dt}}}}$ = $\frac{{21}}{{8{\rm{\pi
}}}}$ cm./sec.
6) If the volume of
the expanding cube is increasing at the rate of 24cm3/min, how fast
is its surface area increasing when the surface area is 216 cm2?
Solution:
Let v be the volume, s be the surface area x be the side of
the cube at time t.
or,s = 216cm2, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$
= ?
or, 6x2 = 216.
Or, x2 = 36.
So, x = 6.
Given, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 24cm3/min.
We have, v = x3.
So, $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 3x2.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.
Or, 24 = 3x2. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ =
$\frac{8}{{{{\rm{x}}^2}}}$
Again, s = 6x2.
Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ =
12x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 12x * $\frac{8}{{{{\rm{x}}^2}}}$ =
$\frac{{96}}{{\rm{x}}}$ = $\frac{{96}}{6}$
So, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 16cm2/min.
7) Two concentric circle
are expanding in such a way that the radius of the inner circle is increasing
at the radius of the inner circle is increasing at the rate of 10cm/sec and
that of the outer circle at the rate of 7cm/sec. At a certain time, the radii
of the inner and outer circles ate respectively 24cm and 30cm. At what time,
the area between the circles increasing or decreasing. How fast?
Solution:
Let r1 and r2 be the radii
of two concentric circles s1 and s2respectively and
let s be the area between two circle at time t.
Given, $\frac{{{\rm{d}}{{\rm{r}}_1}}}{{{\rm{dt}}}}$ =
10cm/sec., $\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$ = 7cm/sec.
r1 = 24cm and r2 = 30cm.
s = s2 – s1 = πr22 –
πr12
So, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 2πr2.$\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$
– 2πr1.$\frac{{{\rm{d}}{{\rm{r}}_2}}}{{{\rm{dt}}}}$.
Where, r1 = 24cm and r2 =
30cm
Then, $\frac{{{\rm{dr}}}}{{{\rm{dt}}}}$ = 2π(30 * 7 – 24 *
10) = 2π(–30) = – 60π.
So, they are between two concentric circle decreasing at the
rate of 60π cm2/sec.
8) A man of height
1.5m walks away from a lamp post of height 4.4m at the rate of 20cm/sec. How fast
is the shadow lengthening when the man is 42 cm from the post?
Solution:
Let AB be the lamp, DE on the height of the man, Let E be
the position of the man in time t.
Let BE = x, EF = y
Since, $\Delta $ABF ~$\Delta $DEF, then,
Or, $\frac{{{\rm{AB}}}}{{{\rm{DE}}}}$ =
$\frac{{{\rm{BF}}}}{{{\rm{EF}}}}$
Or, $\frac{{4.5}}{{1.5}} = \frac{{{\rm{x}} +
{\rm{y}}}}{{\rm{y}}}$
Or, x + y = 3y ⇒ x
= 2y ⇒
y = $\frac{{\rm{x}}}{2}$.
Given, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 20cm/sec.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ =
$\frac{1}{2}.\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{1}{2}$ * 20 cm/sec. = 10
cm/sec.
9) A point is moving
along the curve y = 2x3 – 3x2 in such a way
that its x-coordinate is increasing at the rate of 2cm/sec. Find the rate at
which the distance of the point from the origin is increasing when the point is
at (2,4).
Solution:
Let P(x,y) be any point along the curve y = 2x3 –
3x2 at time t.
Given, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 2cm/sec. ,(x,y) =
(2,4)
Let OP = D.
Then D2 = (x – 0)2 + (y – 0)2 =
x2 + y2.
= x2 + (2x3 + 3x2)2
When P is at (2,4), then,
D2 = 22 + (2.23 –
3.22)2 = 4 + (16 – 12)2 = 20.
So, D = $\sqrt {20} $ = 2$\sqrt 5 $.
Or, $\frac{{{\rm{d}}{{\left( {\rm{D}}
\right)}^2}}}{{{\rm{dt}}}}$ = 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ + 2(2x3 –
3x2).(6x2 – 6x).$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.
Or, 2D. $\frac{{{\rm{d}}\left( {\rm{D}}
\right)}}{{{\rm{dt}}}}$ = [2.2 + 2(2x3 – 3x2)(6x2 –
6x)]$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.
When (x,y) = (2,4),
Or, 2 * 2$\sqrt 5 $ * $\frac{{{\rm{d}}\left( {\rm{D}}
\right)}}{{{\rm{dt}}}}$ = [2x + 2(2x3 – 3.22)(6.22 –
6.2)]2
Or, 4$\sqrt 5 $.$\frac{{{\rm{d}}\left( {\rm{D}}
\right)}}{{{\rm{dt}}}}$ = [4 + 2 * 4 * 12]2
Or, $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$
= $\frac{{200}}{{4\sqrt 5 }}$
So, $\frac{{{\rm{d}}\left( {\rm{D}} \right)}}{{{\rm{dt}}}}$
= 10$\sqrt 5 $ cm/sec.
10. a) A kite is 24m
high and there are 25 meters of cord out. If the kite moves horizontally at the
rate if 36km/hr directly away from the person who is flying it, how fast is the
cord out?
Solution:
Let B be the position of the kite moving horizontally in
time t.
Let AB = x, OB = s
OB2 = OA2 + AB2
s2 = 242 + x2 …(i)
When s = 25,
Or, 252 = 242 + x2
Or, x2 = 252 – 242 =
625 – 576 = 49
So, x = 7.
From equation(i), 2x. $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$.
When, s = 25, x = 7, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 36
km/hr
Then, 2 * 25. $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ = 2 * 7 *
36.
Or, $\frac{{{\rm{ds}}}}{{{\rm{dt}}}}$ =
$\frac{{2{\rm{*}}7{\rm{*}}36}}{{2{\rm{*}}25}}$ = 10.08 km/hr.
b) A 2.5m ladder
leans against the wall. If the top slides downwards at the rate of 12cm/sec,
find the speed of the lower end when it is 2m from the wall.
Solution:
Let AB be the position of the ladder such that:
Let AB = x, OB = y at time t.
Given, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = – 12cm/sec = $ -
\frac{{12}}{{100}}$m/sec.
So, x2 + y2 = (2.5)2.
….(i)
When x = 2m.
Or, 22 + y2 = 6.25
Or, y2 = 2.25
So, y = 1.5m
Now, differentiating (i) w.r.t. to time (t),
Or, 2x.$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ +
2y.$\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = 0.
Or, 2 * 2$\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ + 2 * 1.5 *
$\left( { - \frac{{12}}{{100}}} \right)$ = 0 $\left[
{\frac{{{\rm{dy}}}}{{{\rm{dt}}}} = -
\frac{{12}}{{100}}\frac{{\rm{m}}}{{{\rm{sec}}}}} \right]$
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ =
$\frac{{36}}{{100{\rm{*}}4}}$ = $\frac{9}{{100}}$.
So, speed of the lower end $\left(
{\frac{{{\rm{dx}}}}{{{\rm{dt}}}}} \right)$ = $\frac{9}{{100}}$ m./sec =
9cm/sec.