Exercise 7.1
In any triangle,
prove that (Exs. 1-5)
1.a) a(b.cosc –
c.cosB) = b2 – c2= b2 – c2
Solution:
L.H.S. = a(b.cosc
– c.cosB) = b2 – c2
= a $\left( {{\rm{b}}.\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{ab}}}} - {\rm{c}}.\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{ca}}}}} \right)$
= $\frac{{\rm{a}}}{{2{\rm{a}}}}$ (a2 + b2 –
c2 – c2 – a2 + b2)
= $\frac{1}{2}$ (2b2 – 2c2) = b2 –
c2 = R.H.S.
b) $\frac{{{\rm{cosA}}}}{{\rm{a}}}$
+ $\frac{{\rm{a}}}{{{\rm{bc}}}}$ =$\frac{{{\rm{cosB}}}}{{\rm{b}}}$ +
$\frac{{\rm{b}}}{{{\rm{ca}}}}$ = $\frac{{{\rm{cosC}}}}{{\rm{c}}}$ +
$\frac{{\rm{c}}}{{{\rm{ab}}}}$
Solution:
L.H.S. =
$\frac{{{\rm{cosA}}}}{{\rm{a}}}$ + $\frac{{\rm{a}}}{{{\rm{bc}}}}$ =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{{\rm{a}}.2{\rm{bc\:}}}}$
+ $\frac{{\rm{a}}}{{{\rm{bc}}}}$
= $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2} +
2{{\rm{a}}^2}}}{{2{\rm{abc}}}}$ = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{abc}}}}$
Middle term =$\frac{{{\rm{cosB}}}}{{\rm{b}}}$
+ $\frac{{\rm{b}}}{{{\rm{ca}}}}$ = $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{{\rm{b}}.2{\rm{ac\:}}}}$ + $\frac{{\rm{b}}}{{{\rm{ca}}}}$.
= $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2} +
2{{\rm{b}}^2}}}{{2{\rm{abc}}}}$ = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{abc}}}}$
R.H.S. =
$\frac{{{\rm{cosC}}}}{{\rm{c}}}$ + $\frac{{\rm{c}}}{{{\rm{ab}}}}$ =
$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{{\rm{c}}.2{\rm{ab\:}}}}$
+ $\frac{{\rm{c}}}{{{\rm{ab}}}}$.
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2} -
2{{\rm{c}}^2}}}{{2{\rm{abc}}}}$ = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{abc}}}}$
c) $\frac{{{\rm{cosA}}}}{{\rm{a}}}
+ \frac{{{\rm{cosB}}}}{{\rm{b}}} + \frac{{{\rm{cosC}}}}{{\rm{c}}}$=
$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{abc}}}}$
Solution:
L.H.S. = $\frac{{{\rm{cosA}}}}{{\rm{a}}} +
\frac{{{\rm{cosB}}}}{{\rm{b}}} + \frac{{{\rm{cosC}}}}{{\rm{c}}}$
= $\frac{1}{{\rm{q}}}$. $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2}
- {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ + $\frac{1}{{\rm{b}}}$$\frac{{{{\rm{c}}^2} +
{{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ +
$\frac{1}{{\rm{c}}}{\rm{\:}}$$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{ab}}}}$
= $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2} +
{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{abc}}}}$
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{abc}}}}$ = R.H.S.
2.a) a3(sin3B
– sin3C) + b3(sin3C – sin3A) + c3(sin3A
– sin3B)=0
Solution: a3(sin3B
– sin3C) + b3(sin3C – sin3A) + c3(sin3A
– sin3B)
= a3$\left(
{\frac{{{{\rm{b}}^3}}}{{8{{\rm{R}}^3}}} -
\frac{{{{\rm{c}}^3}}}{{8{{\rm{r}}^3}}}} \right)$ + b3$\left(
{\frac{{{{\rm{c}}^3}}}{{8{{\rm{R}}^3}}} - \frac{{{{\rm{a}}^3}}}{{8{{\rm{r}}^3}}}}
\right)$ + c3$\left( {\frac{{{{\rm{a}}^3}}}{{8{{\rm{R}}^3}}} -
\frac{{{{\rm{b}}^3}}}{{8{{\rm{r}}^3}}}} \right)$
= $\frac{1}{{8{{\rm{r}}^3}}}$(a3b3 –
a3c3 + b3c3 – a3b3 +
c3a3 – b3c3)z =
$\frac{1}{{8{{\rm{r}}^3}}}$. 0
= 0 = R.H.S.
b) $\frac{{{{\rm{a}}^2}\sin
\left( {{\rm{B}} - {\rm{c}}} \right)}}{{{\rm{sinA}}}}$ +
$\frac{{{{\rm{b}}^2}{\rm{sin}}\left( {{\rm{C}} - {\rm{A}}}
\right)}}{{{\rm{sinB}}}}$ + $\frac{{{{\rm{c}}^2}\sin \left( {{\rm{A}} -
{\rm{B}}} \right)}}{{{\rm{sinC}}}}$ =0
Solution:
L.H.S. =
$\frac{{{{\rm{a}}^2}\sin \left( {{\rm{B}} - {\rm{c}}} \right)}}{{{\rm{sinA}}}}$
+ $\frac{{{{\rm{b}}^2}{\rm{sin}}\left( {{\rm{C}} - {\rm{A}}}
\right)}}{{{\rm{sinB}}}}$ + $\frac{{{{\rm{c}}^2}\sin \left( {{\rm{A}} -
{\rm{B}}} \right)}}{{{\rm{sinC}}}}$
= $\frac{{4{{\rm{R}}^2}{{\sin }^2}{\rm{A}}.\sin \left(
{{\rm{B}} - {\rm{C}}} \right)}}{{{\rm{sinA}}}}$ + $\frac{{4{{\rm{R}}^2}{{\sin
}^2}{\rm{B}}.\sin \left( {{\rm{C}} - {\rm{A}}} \right)}}{{{\rm{sinB}}}}$ +
$\frac{{4{{\rm{R}}^2}{{\sin }^2}{\rm{C}}.\sin \left( {{\rm{A}} - {\rm{B}}}
\right)}}{{{\rm{sinC}}}}$
= 4R2 {sinA.sin(B – C) + sinB.sin(C – A) +
sinC sin(A – B)}
= 4R2 {sin(B+C).sin(B – C) + sin(C +
A).sin(C – A) + sin(A + B).sin(A – B)} [A + B + C = π]
= 4R2 (sin2B – sin2C +
sin2C – sin2A + sin2A – sin2B)
[sin(x+y).sin(x – y) = sin2x. – sin2y]
= 4R2. 0 = 0 =
R.H.S.
c) $\frac{{{\rm{asin}}\left(
{{\rm{B}} - {\rm{C}}} \right)}}{{{{\rm{b}}^2} - {{\rm{c}}^2}}}$=$\frac{{{\rm{bsin}}\left(
{{\rm{C}} - {\rm{A}}} \right)}}{{{{\rm{c}}^2} - {{\rm{a}}^2}}}$=
$\frac{{{\rm{C}}.\sin \left( {{\rm{A}} - {\rm{B}}} \right)}}{{{{\rm{a}}^2} -
{{\rm{b}}^2}}}$
Solution:
L.H.S. =
$\frac{{{\rm{asin}}\left( {{\rm{B}} - {\rm{C}}} \right)}}{{{{\rm{b}}^2} -
{{\rm{c}}^2}}}$ = $2{\rm{R}}.{\rm{sinA}}.\frac{{\sin \left( {{\rm{B}} -
{\rm{C}}} \right)}}{{{{\rm{b}}^2} - {{\rm{c}}^2}}}$
= $\frac{{2{\rm{R}}.\sin \left( {{\rm{B}} + {\rm{C}}}
\right).\sin \left( {{\rm{B}} - {\rm{C}}} \right)}}{{{{\rm{b}}^2} -
{{\rm{c}}^2}}}$ [B+C = π – A]
= $\frac{{2{\rm{R}}.\left( {{{\sin }^2}{\rm{B}} - {{\sin
}^2}{\rm{C}}} \right)}}{{4{{\rm{R}}^2}\left( {{{\sin }^2}{\rm{B}} - {{\sin
}^2}{\rm{C}}} \right)}}$ [b = 2R sinB etc.]
= $\frac{1}{{2{\rm{R}}}}$.
Middle term =
$\frac{{{\rm{bsin}}\left( {{\rm{C}} - {\rm{A}}} \right)}}{{{{\rm{c}}^2} -
{{\rm{a}}^2}}}$ = $\frac{{2{\rm{RsinB}}.\sin \left( {{\rm{C}} - {\rm{A}}}
\right)}}{{{{\rm{c}}^2} - {{\rm{a}}^2}}}$
= $\frac{{2{\rm{R}}.\sin \left( {{\rm{C}} + {\rm{A}}}
\right).\sin \left( {{\rm{C}} - {\rm{A}}} \right)}}{{{{\rm{c}}^2} -
{{\rm{a}}^2}}}$ [C + A = π – B]
= $\frac{{2{\rm{R}}.\left( {{{\sin }^2}{\rm{C}} - {{\sin
}^2}{\rm{A}}} \right)}}{{4{{\rm{R}}^2}\left( {{{\sin }^2}{\rm{C}} - {{\sin
}^2}{\rm{A}}} \right)}}$ [C = 2R sinC .etc]
= $\frac{1}{{2{\rm{R}}}}$
R.H.S. =
$\frac{{{\rm{C}}.\sin \left( {{\rm{A}} - {\rm{B}}} \right)}}{{{{\rm{a}}^2} -
{{\rm{b}}^2}}}$ = $\frac{{2{\rm{RsinC}}.\sin \left( {{\rm{A}} - {\rm{B}}}
\right)}}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}$
= $\frac{{2{\rm{R}}.\sin \left( {{\rm{A}} + {\rm{B}}}
\right).\sin \left( {{\rm{A}} - {\rm{B}}} \right)}}{{{{\rm{a}}^2} -
{{\rm{b}}^2}}}$ [A + B = π – C]
= $\frac{{2{\rm{R}}.\left( {{{\sin }^2}{\rm{A}} - {{\sin
}^2}{\rm{B}}} \right)}}{{4{{\rm{R}}^2}\left( {{{\sin }^2}{\rm{A}} - {{\sin
}^2}{\rm{B}}} \right)}}$ [a = 2R sinA etc.]
= $\frac{1}{{2{\rm{R}}}}$
Hence, L.H.S. =
Middle term = R.H.S.
3.a) (b + c)cosA + (c
+ a)cosB + (a + B)cosC=a+b+c
Solution:
L.H.S. = (b +
c)cosA + (c + a)cosB + (a + B)cosC
= b.cosA + c.cosA + c.cosB + a.cosB + a.cosC + b.cosC
= (bcosA + acosB) + (ccosA +a.cosC) + (b.cosC + c.cosB)
= c + b + a [ a= b.cosC + c.cosB]
= a + b + c = R.H.S.
b) b2sin2C
+ c2 sin2B=2ab.sinC
Solution:
L.H.S. = b2sin2C
+ c2 sin2B
= b2. 2sinC.cosC + c2.2sinB.cosB
= 2b2 . $\frac{{\rm{c}}}{{2{\rm{R}}}}$ .
$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$ + 2c2 .
$\frac{{\rm{b}}}{{2{\rm{R}}}}$ .$\frac{{{{\rm{c}}^{\rm{a}}} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{ca}}}}$
= $\frac{{{\rm{bc}}}}{{2{\rm{Ra}}}}$. $\left( {{{\rm{a}}^2}
+ {{\rm{b}}^2} - {{\rm{c}}^2}} \right)$ + $\frac{{{\rm{bc}}}}{{2{\rm{Ra}}}}$.
$\left( {{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}} \right)$
= $\frac{{\rm{b}}}{{2{\rm{Ra}}}}\left( {{{\rm{a}}^2} +
{{\rm{b}}^2} - {{\rm{c}}^2} + {{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}
\right)$
= $\frac{{{\rm{bc}}}}{{2{\rm{Ra}}}}$.2a2 =
$\frac{{2{\rm{abc}}}}{{2{\rm{R}}}}$ = 2ab. $\frac{{\rm{c}}}{{2{\rm{R}}}}$ = 2ab.sinC
= R.H.S.
c) c2cos2B
+ b2cos2B + bc.cos(B – C) = $\frac{1}{2}\left(
{{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}} \right)$
Solution:
L.H.S. = c2cos2B
+ b2cos2B + bc.cos(B – C)
= (c.cosB + b.cosC)2 – 2bc.cosB.cosC +
bc.cosB.cosC +bc.sinB.sinC
= a2 – bc(cosB.cosC –
sinB.sinC) [a = b.cosC + cosB]
= a2 – bc.cos(B + C)
= a2 – bc.$\frac{{{{\rm{b}}^2} +
{{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$
=$\frac{{2{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2} -
{{\rm{a}}^2}}}{2}$
= $\frac{1}{2}\left( {{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}} \right)$ = R.H.S.
d) $\frac{{{\rm{c}} -
{\rm{bcosA}}}}{{{\rm{b}} - {\rm{c}}.{\rm{cosA}}}}$ =$\frac{{{\rm{CosB}}}}{{{\rm{cosC}}}}$
Solution:
L.H.S. =
$\frac{{{\rm{c}} - {\rm{bcosA}}}}{{{\rm{b}} - {\rm{c}}.{\rm{cosA}}}}$
= $\frac{{{\rm{a}}.{\rm{cosB}} + {\rm{b}}.{\rm{cosA}} -
{\rm{bcosA}}}}{{{\rm{acosC}} + {\rm{c}}.{\rm{cosA}} -
{\rm{c}}.{\rm{cosA}}}}$ [b = acosC + c.cosA]
= $\frac{{{\rm{a}}.{\rm{cosB}}}}{{{\rm{a}}.{\rm{cosC}}}}$ =
$\frac{{{\rm{CosB}}}}{{{\rm{cosC}}}}$ =
R.H.S.
e) $\frac{{{\rm{a}} -
{\rm{bcosC}}}}{{{\rm{c}} - {\rm{b}}.{\rm{cosA}}}}$=$\frac{{{\rm{sinC}}}}{{{\rm{sinA}}}}$
Solution:
L.H.S. =
$\frac{{{\rm{a}} - {\rm{bcosC}}}}{{{\rm{c}} - {\rm{b}}.{\rm{cosA}}}}$
= $\frac{{{\rm{b}}.{\rm{cosC}} + {\rm{c}}.{\rm{cosC}} -
{\rm{bcosC}}}}{{{\rm{acosB}} + {\rm{b}}.{\rm{cosA}} -
{\rm{b}}.{\rm{cosA}}}}$ [a = bcosC + c.cosB.etc]
= $\frac{{{\rm{c}}.{\rm{cosB}}}}{{{\rm{a}}.{\rm{cosB}}}}$ =
$\frac{{2{\rm{R}}.{\rm{sinC}}}}{{2{\rm{RsinA}}}}$ =
$\frac{{{\rm{sinC}}}}{{{\rm{sinA}}}}$ =
R.H.S.
4.a) a3.sin(B
– C) + b3.sin(C – A) + c3.sin(A – B) =0
L.H.S. = a3.sin(B
– C) + b3.sin(C – A) + c3.sin(A – B)
= a2.a.sin(B – C) + b2.b sin(C – A) +
c2.c .sin(A – B)
= a2.2R sinA.sin(B – C) + b2.2R
sinB.sin(C – A) + c2.2R.sinC.sin(A – B)
[a = 2R sinA.etc]
= 2Ra2 sin(B + C)sin(B – C) + 2Rb2 sin(C
+ A).sin(C – A) + 2Rc2 sin(A + B).sin(A – B).
= 2R{a2(sin2B – sin2C) + b2(sin2C
– sin2A) + c2 (sin2A – sin2B)}
= 2R $\{ {{\rm{a}}^2}\left(
{\frac{{{{\rm{b}}^2}}}{{4{{\rm{R}}^2}}} -
\frac{{{{\rm{c}}^2}}}{{4{{\rm{R}}^2}}}} \right) + {{\rm{b}}^2}\left(
{\frac{{{{\rm{c}}^2}}}{{4{{\rm{R}}^2}}} -
\frac{{{{\rm{a}}^2}}}{{4{{\rm{R}}^2}}}} \right) + {{\rm{c}}^2}\left(
{\frac{{{{\rm{a}}^2}}}{{4{{\rm{R}}^2}}} -
\frac{{{{\rm{b}}^2}}}{{4{{\rm{R}}^2}}}} \right)$
= $\frac{{2{\rm{R}}}}{{4{{\rm{R}}^2}}}$ (a2b2 –
a2c2 + b2c2 – a2b2 +
c2a2 – b2c2) =
$\frac{1}{{2{\rm{R}}}}$. 0 = 0 = R.H.S.
b) $\frac{{{{\rm{b}}^2}
- {{\rm{c}}^2}}}{{{{\rm{a}}^2}}}$ sin2A + $\frac{{{{\rm{c}}^2} -
{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}$sin2B + $\frac{{{{\rm{a}}^2} -
{{\rm{b}}^2}}}{{{{\rm{c}}^2}}}$ sin2C=0
Solution:
L.H.S. = $\frac{{{{\rm{b}}^2} -
{{\rm{c}}^2}}}{{{{\rm{a}}^2}}}$ sin2A + $\frac{{{{\rm{c}}^2} -
{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}$sin2B + $\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{c}}^2}}}$
sin2C
= $\frac{{{{\rm{b}}^2} - {{\rm{c}}^2}}}{{{{\rm{a}}^2}}}$. 2sinA.cosA
+ $\frac{{{{\rm{c}}^2} - {{\rm{a}}^2}}}{{{{\rm{b}}^2}}}$. 2sinB.cosB +
$\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{c}}^2}}}$.2sinC.cosC
= $\frac{{2\left( {{{\rm{b}}^2} - {{\rm{c}}^2}}
\right)}}{{{{\rm{a}}^2}}}$. $\frac{{\rm{a}}}{{2{\rm{R}}}}$ . $\frac{{{{\rm{b}}^2}
+ {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ + $\frac{{2\left(
{{{\rm{c}}^2} - {{\rm{a}}^2}} \right)}}{{{{\rm{b}}^2}}}$.
$\frac{{\rm{b}}}{{2{\rm{R}}}}$ . $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{ca}}}}$ + $\frac{{2\left( {{{\rm{a}}^2} - {{\rm{b}}^2}}
\right)}}{{{{\rm{c}}^2}}}$. $\frac{{\rm{c}}}{{2{\rm{R}}}}$ .
$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
[$\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = 2R. etc. and cosA
= $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$]
= $\frac{1}{{2{\rm{abcR}}}}$ {(b2 – c2)(b2 +
c2 – a2) + (c2 – a2)(c2+a2 –
b2) + (a2 – b2)(a2 + b2 –
c2)}
= $\frac{1}{{2{\rm{abcR}}}}$[b4 – c4 –
a2(b2 – c2) + c4 – a4 –
b2(c2 – a2) + a4 – b4 –
c2(a2 – b2)}
= $\frac{1}{{2{\rm{abcR}}}}$ [–a2b2 +
a2c2 – b2c2 + a2b2 –
c2a2 + b2c2}
= $\frac{1}{{2{\rm{abcR}}}}$ . 0 = 0 = R.H.S.
c) sin(A + B) : sin(A
– B) = c2:(a2-b2)
Solution:
L.H.S. = sin(A +
B) : sin(A – B)
= $\frac{{\sin \left( {{\rm{A}} + {\rm{B}}} \right)}}{{\sin
\left( {{\rm{A}} - {\rm{B}}} \right)}}$ = $\frac{{\sin \left( {{\rm{A}} +
{\rm{B}}} \right)}}{{\sin \left( {{\rm{A}} - {\rm{B}}} \right)}}.\frac{{\sin
\left( {{\rm{A}} + {\rm{B}}} \right)}}{{\sin \left( {{\rm{A}} + {\rm{B}}}
\right)}}$
= $\frac{{{\rm{sinC}}.{\rm{sinC}}}}{{{{\sin }^2}{\rm{A}} -
{{\sin }^2}{\rm{B}}}}$ [ A + B = π – C and sin(A+B) .sin(A – B) = sin2A – sin2B]
= $\frac{{{{\sin }^2}{\rm{C}}}}{{{{\sin }^2}{\rm{A}} -
{{\sin }^2}{\rm{B}}}}$ = $\frac{{{{\rm{c}}^2}}}{{4{{\rm{R}}^2}\left(
{\frac{{{{\rm{a}}^2}}}{{4{{\rm{R}}^2}}} -
\frac{{{{\rm{b}}^2}}}{{4{{\rm{R}}^2}}}} \right)}}$ [sinA =
$\frac{{\rm{a}}}{{2{\rm{R}}}}$,etc.]
= $\frac{{{{\rm{c}}^2}}}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}$ = R.H.S.
d) (a2 –
b2 + c2) tanB =(a2 + b2 –
c2) tanC=(b2 + c2 – a2)
tanA
Solution:
L.H.S. = (a2 –
b2 + c2) tanB = (a2 + c2 –
b2) $\frac{{{\rm{sinB}}}}{{{\rm{cosB}}}}$.
= (a2 + c2 – b2).
$\frac{{\rm{b}}}{{2{\rm{R}}}}$$\left( {\frac{{2{\rm{ac}}}}{{{{\rm{a}}^2} +
{{\rm{c}}^2} - {{\rm{b}}^2}}}} \right)$ = $\frac{{{\rm{abc}}}}{{\rm{R}}}{\rm{\:}}$
Middle term = (a2 +
b2 – c2) tanC = (a2 + b2 –
c2) $\frac{{{\rm{sinC}}}}{{{\rm{cosC}}}}$.
= (a2 + b2 – c2)
$\frac{{\rm{c}}}{{2{\rm{R}}}}$$\left( {\frac{{2{\rm{ab}}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2} - {{\rm{c}}^2}}}} \right)$ = $\frac{{{\rm{abc}}}}{{\rm{R}}}$
R.H.S. = (b2 +
c2 – a2) tanA = (b2 + c2 –
a2) $\frac{{{\rm{SinA}}}}{{{\rm{cosA}}}}$.
= (b2 + c2 – a2)
$\frac{{\rm{a}}}{{2{\rm{R}}}}$$\left( {\frac{{2{\rm{ab}}}}{{{{\rm{b}}^2} +
{{\rm{c}}^2} - {{\rm{a}}^2}}}} \right)$ = $\frac{{{\rm{abc}}}}{{\rm{R}}}$.
Hence, L.H.S. = Middle term = R.H.S.
e) $\frac{{{\rm{cosB}}
- {\rm{cosC}}}}{{{\rm{cosA}} + 1}}$ = $\frac{{{\rm{c}} - {\rm{b}}}}{{\rm{a}}}$
Solution:
L.H.S. =
$\frac{{{\rm{cosB}} - {\rm{cosC}}}}{{{\rm{cosA}} + 1}}$ = $\frac{{\left(
{2{{\cos }^2}\frac{{\rm{B}}}{2} - 1} \right) - \left( {2{{\cos
}^2}\frac{{\rm{C}}}{2} - 1} \right)}}{{2{{\cos }^2}\frac{{\rm{A}}}{2}}}$
= $\frac{{{{\cos }^2}\frac{{\rm{B}}}{2} - {{\cos
}^2}\frac{{\rm{C}}}{2}}}{{{{\cos }^2}\frac{{\rm{A}}}{2}}}$ =
$\frac{{\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{b}}} \right)}}{{{\rm{ac}}}} -
\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{c}}}
\right)}}{{{\rm{ab}}}}}}{{\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}{{{\rm{bc}}}}}}$ = $\frac{{{\rm{bs}}\left( {{\rm{s}} - {\rm{b}}}
\right) - {\rm{cs}}\left( {{\rm{s}} - {\rm{c}}} \right)}}{{{\rm{as}}\left(
{{\rm{s}} - {\rm{a}}} \right)}}$
= $\frac{{{\rm{s}}\left( {{\rm{bs}} - {{\rm{b}}^2} -
{\rm{cs}} + {{\rm{c}}^2}} \right)}}{{{\rm{sa}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}$ = $\frac{{{\rm{s}}\left( {{\rm{b}} - {\rm{c}}} \right) -
({{\rm{b}}^2} - {{\rm{c}}^2})}}{{{\rm{a}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}{\rm{\:\:}}$
= $\frac{{{\rm{s}}\left( {{\rm{b}} - {\rm{c}}} \right) -
\left( {{\rm{b}} - {\rm{c}}} \right)\left( {{\rm{b}} + {\rm{c}}}
\right)}}{{{\rm{a}}\left( {{\rm{s}} - {\rm{a}}} \right)}}$ = $\frac{{\left(
{{\rm{b}} - {\rm{c}}} \right)\left\{ {{\rm{s}} - \left( {{\rm{b}} + {\rm{c}}}
\right)} \right\}}}{{{\rm{a}}\left( {{\rm{s}} - {\rm{a}}} \right)}}$
= $\frac{{{\rm{b}} - {\rm{c}}}}{{\rm{a}}}$. $\frac{{\left\{
{{\rm{s}} - \left( {2{\rm{s}} - {\rm{a}}} \right)} \right\}}}{{{\rm{s}} - {\rm{a}}}}$
= $\frac{{{\rm{b}} - {\rm{c}}}}{{\rm{a}}}$. $\frac{{ - {\rm{s}} +
{\rm{a}}}}{{{\rm{s}} - {\rm{a}}}}$ = $\frac{{{\rm{c}} - {\rm{b}}}}{{\rm{a}}}$ = R.H.S.
f) $\frac{{{\rm{asinA}}
+ {\rm{bsinB}} + {\rm{csinC}}}}{{{\rm{acosA}} + {\rm{bcosB}} +
{\rm{c}}.{\rm{cosC}}}}$ = $\frac{{\rm{R}}}{{{\rm{abc}}}}$(a2 +
b2 + c2)
Solution:
L.H.S. =
$\frac{{{\rm{asinA}} + {\rm{bsinB}} + {\rm{csinC}}}}{{{\rm{acosA}} +
{\rm{bcosB}} + {\rm{c}}.{\rm{cosC}}}}$
= $\frac{{{\rm{a}}.\frac{{\rm{a}}}{{2{\rm{R}}}} +
{\rm{b}}.\frac{{\rm{b}}}{{2{\rm{R}}}} +
{\rm{c}}.\frac{{\rm{c}}}{{2{\rm{R}}}}}}{{2{\rm{RsinA}}.{\rm{cosA}} +
2{\rm{RsinB}}.{\rm{cosB}} + 2{\rm{RsinC}}.{\rm{cosC}}}}$
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{R}}.{\rm{R}}\left( {2{\rm{sinA}}.{\rm{cosA}} +
2{\rm{sinB}}.{\rm{cosB}} + 2{\rm{sinC}}.{\rm{cosC}}} \right)}}$
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{{\rm{R}}^2}\left( {{\rm{sin}}2{\rm{A}} + {\rm{sin}}2{\rm{B}}
+ {\rm{sin}}2{\rm{C}}} \right)}}$
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{{\rm{R}}^2}.4{\rm{sinA}}.{\rm{sinB}}.{\rm{sinC}}}}$
[A+B+ C = π →sin2A + sin2B +sin2C
=4sinA.sinB.sinC]
= $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{8{{\rm{R}}^2}.\frac{{\rm{a}}}{{2{\rm{R}}}}.\frac{{\rm{b}}}{{2{\rm{R}}}}.\frac{{\rm{c}}}{{2{\rm{R}}}}}}$
= $\frac{{\rm{R}}}{{{\rm{abc}}}}$(a2 + b2 +
c2) = R.H.S.
5. a) $\frac{{{\rm{b}}
- {\rm{c}}}}{{\rm{a}}}$. Cos $\frac{{\rm{A}}}{2}$ = sin $\frac{{{\rm{B}} -
{\rm{C}}}}{2}$
Solution:
L.H.S. =
$\frac{{{\rm{b}} - {\rm{c}}}}{{\rm{a}}}$. Cos $\frac{{\rm{A}}}{2}$ =
$\frac{{2{\rm{RsinB}} - 2{\rm{RsinC}}}}{{2{\rm{RsinA}}}}$. Cos
$\frac{{\rm{A}}}{2}$
= $\frac{{{\rm{sinB}} - {\rm{sinC}}}}{{{\rm{sinA}}}}$. Cos
$\frac{{\rm{A}}}{2}$ = $\frac{{2\cos \frac{{{\rm{B}} + {\rm{C}}}}{2}.\sin
\frac{{{\rm{B}} - {\rm{C}}}}{2}}}{{2\sin \frac{{\rm{A}}}{2}.\cos
\frac{{\rm{A}}}{2}}}$. cos $\frac{{\rm{A}}}{2}$
= $\frac{{2\sin \frac{{\rm{A}}}{2}.\sin \frac{{{\rm{B}} -
{\rm{C}}}}{2}}}{{2\sin \frac{{\rm{A}}}{2}}}$ = sin $\frac{{{\rm{B}} -
{\rm{C}}}}{2}$ = R.H.S.
b) bcos2$\frac{{\rm{A}}}{2}$
+ a.cos2$\frac{{\rm{B}}}{2}$ = $\frac{{{\rm{a}} + {\rm{b}} +
{\rm{c}}}}{2}$
Solution:
L.H.S. = bcos2$\frac{{\rm{A}}}{2}$ + a.cos2$\frac{{\rm{B}}}{2}$
= b. $\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{a}}} \right)}}{{{\rm{bc}}}}$ + a.
$\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{b}}} \right)}}{{{\rm{ca}}}}$
= $\frac{{{{\rm{s}}^2} - {\rm{as}}}}{{\rm{c}}}$ +
$\frac{{{{\rm{s}}^2} - {\rm{bs}}}}{{\rm{c}}}$ = $\frac{{2{{\rm{s}}^2} - \left(
{{\rm{a}} + {\rm{b}}} \right){\rm{s}}}}{{\rm{c}}}$
= $\frac{{2{{\rm{s}}^2} - \left( {2{\rm{s}} - {\rm{c}}}
\right){\rm{s}}}}{{\rm{c}}}$ = $\frac{{2{{\rm{s}}^2} - 2{{\rm{s}}^2} +
{\rm{cs}}}}{{\rm{c}}}$ = $\frac{{{\rm{cs}}}}{{\rm{c}}}$ = s = $\frac{{{\rm{a}}
+ {\rm{b}} + {\rm{c}}}}{2}$ = R.H.S.
c) a(cosB – cosC) =2(c
–b) cos2$\frac{{\rm{A}}}{2}$
Solution:
L.H.S. = a(cosB – cosC)
= a$\left( {\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{ca}}}} - \frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)$ = $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{c}}}}$ – $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{b}}}}$
= $\frac{{{\rm{b}}{{\rm{c}}^2} + {{\rm{a}}^2}{\rm{b}} -
{{\rm{b}}^3} - {{\rm{a}}^2}{\rm{c}} - {{\rm{b}}^2}{\rm{c}} +
{{\rm{c}}^3}}}{{2{\rm{bc}}}}$
= $\frac{{{{\rm{c}}^3} - {{\rm{b}}^3} - {{\rm{b}}^2}{\rm{c}}
+ {\rm{b}}{{\rm{c}}^2} - {{\rm{a}}^2}{\rm{c}} +
{{\rm{a}}^2}{\rm{b}}}}{{2{\rm{bc}}}}$
= $\frac{{\left( {{\rm{c}} - {\rm{b}}} \right)\left(
{{{\rm{c}}^2} + {\rm{cb}} + {{\rm{b}}^2}} \right) - {\rm{bc}}\left( {{\rm{b}} -
{\rm{c}}} \right) - {{\rm{a}}^2}\left( {{\rm{c}} - {\rm{b}}}
\right)}}{{2{\rm{bc}}}}$
= $\frac{{{\rm{c}} - {\rm{b}}}}{{2{\rm{cb}}}}$ (c2 +
cb + b2 + bc – a2)
= $\left( {\frac{{{\rm{c}} - {\rm{b}}}}{{2{\rm{cb}}}}}
\right)$(b2 + 2bc + c2 – a2) =
$\frac{{{\rm{c}} - {\rm{b}}}}{{2{\rm{bc}}}}$ {(b + c)2 – a2}
= $\left( {\frac{{{\rm{c}} - {\rm{b}}}}{{2{\rm{bc}}}}}
\right)$ (b + c + a)(b + c – a)
= $\frac{{\left( {{\rm{c}} - {\rm{b}}}
\right).2{\rm{s}}.\left( {2{\rm{s}} - 2{\rm{a}}} \right)}}{{2{\rm{bc}}}}$
[a + b + c = 2s]
= 2(c – b). $\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}{{{\rm{bc}}}}$ = 2(c –b) cos2$\frac{{\rm{A}}}{2}$ = R.H.S.
d) $\frac{{{\rm{b}} -
{\rm{c}}}}{{\rm{a}}}$ cos2$\frac{{\rm{A}}}{2}$ + $\frac{{{\rm{c}} -
{\rm{a}}}}{{\rm{b}}}$. Cos2$\frac{{\rm{B}}}{2}$ + $\frac{{{\rm{a}} -
{\rm{b}}}}{{\rm{c}}}$ cos2$\frac{{\rm{C}}}{2}$=0
Solution:
L.H.S. = $\frac{{{\rm{b}} - {\rm{c}}}}{{\rm{a}}}$ cos2$\frac{{\rm{A}}}{2}$
+ $\frac{{{\rm{c}} - {\rm{a}}}}{{\rm{b}}}$. Cos2$\frac{{\rm{B}}}{2}$
+ $\frac{{{\rm{a}} - {\rm{b}}}}{{\rm{c}}}$ cos2$\frac{{\rm{C}}}{2}$
= $\frac{{{\rm{b}} - {\rm{c}}}}{2}$. $\frac{{{\rm{s}}\left(
{{\rm{s}} - {\rm{a}}} \right)}}{{{\rm{bc}}}}$ + $\frac{{{\rm{c}} -
{\rm{a}}}}{{\rm{b}}}$. $\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{b}}}
\right)}}{{{\rm{ca}}}}$ + $\frac{{{\rm{a}} - {\rm{b}}}}{{\rm{c}}}$.
$\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{c}}} \right)}}{{{\rm{ab}}}}$
= $\frac{{\rm{s}}}{{{\rm{abc}}}}${(b – c)(s – a) + (c – a)(s
– b) + (a – b)(s – c)}
= $\frac{{\rm{s}}}{{{\rm{abc}}}}$ {bs – ab – cs + ca + cs –
bc – as + ab + as – ac – bs + bc}
= $\frac{{\rm{s}}}{{{\rm{abc}}}}$.0 = 0 = R.H.S.
e) bc.cos2$\frac{{\rm{A}}}{2}$
+ ca.cos2$\frac{{\rm{B}}}{2}$ + ab.cos2$\frac{{\rm{C}}}{2}$=
s2
Solution:
L.H.S. = bc.cos2$\frac{{\rm{A}}}{2}$
+ ca.cos2$\frac{{\rm{B}}}{2}$ + ab.cos2$\frac{{\rm{C}}}{2}$
= bc. $\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}{{{\rm{bc}}}}$ + ca. $\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{b}}}
\right)}}{{{\rm{ca}}}}$ + ab.$\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{c}}}
\right)}}{{{\rm{ab}}}}$
= s2 – as + s2 – bs + s2 –
cs = 3s2 – s(a + b + c).
= 3s2 – s.2s = 3s2 – 2s2 =
s2 = R.H.S.
f) tan2$\frac{{\rm{A}}}{2}$.
tan2$\frac{{\rm{B}}}{2}$.tan2$\frac{{\rm{C}}}{2}$=$\left(
{\frac{{{\rm{s}} - {\rm{a}}}}{{\rm{s}}}} \right)$.$\left( {\frac{{{\rm{s}} -
{\rm{b}}}}{{\rm{s}}}} \right)$.${\rm{\:}}\left( {\frac{{{\rm{s}} -
{\rm{c}}}}{{\rm{s}}}} \right)$
Solution:
L.H.S. = tan2$\frac{{\rm{A}}}{2}$.
tan2$\frac{{\rm{B}}}{2}$.tan2$\frac{{\rm{C}}}{2}$
= $\frac{{\left( {{\rm{s}} - {\rm{b}}} \right).\left(
{{\rm{s}} - {\rm{c}}} \right)}}{{{\rm{s}}\left( {{\rm{s}} - {\rm{a}}}
\right)}}$.$\frac{{\left( {{\rm{s}} - {\rm{c}}} \right)\left( {{\rm{s}} -
{\rm{a}}} \right)}}{{{\rm{s}}\left( {{\rm{s}} - {\rm{b}}}
\right)}}$.${\rm{\:}}\frac{{\left( {{\rm{s}} - {\rm{a}}} \right)\left(
{{\rm{s}} - {\rm{b}}} \right)}}{{{\rm{s}}\left( {{\rm{s}} - {\rm{c}}}
\right)}}$
= $\left( {\frac{{{\rm{s}} - {\rm{a}}}}{{\rm{s}}}}
\right)$.$\left( {\frac{{{\rm{s}} - {\rm{b}}}}{{\rm{s}}}}
\right)$.${\rm{\:}}\left( {\frac{{{\rm{s}} - {\rm{c}}}}{{\rm{s}}}} \right)$ = R.H.S.
g) (b + c – a)(cot
$\frac{{\rm{B}}}{2}$ + cot $\frac{{\rm{C}}}{2}$)=2a. cot $\frac{{\rm{A}}}{2}$
Solution:
L.H.S. = (b + c –
a)(cot $\frac{{\rm{B}}}{2}$ + cot $\frac{{\rm{C}}}{2}$)
= (2s – 2a) $\left\{ {\sqrt {\frac{{{\rm{s}}\left( {{\rm{s}}
- {\rm{b}}} \right)}}{{\left( {{\rm{s}} - {\rm{a}}} \right)\left( {{\rm{s}} -
{\rm{c}}} \right)}}} + \sqrt {\frac{{{\rm{s}}\left( {{\rm{s}} - {\rm{c}}}
\right)}}{{\left( {{\rm{s}} - {\rm{a}}} \right)\left( {{\rm{s}} - {\rm{b}}}
\right)}}} } \right\}$
= 2(s – a) $\frac{{\sqrt {\rm{s}} }}{{\sqrt {{\rm{s}} -
{\rm{a}}} }}$$\left( {\frac{{{\rm{s}} - {\rm{b}} + {\rm{s}} - {\rm{c}}}}{{\sqrt
{\left( {{\rm{s}} - {\rm{b}}} \right)\left( {{\rm{s}} - {\rm{c}}} \right)} }}}
\right)$
= 2$\sqrt {\left( {{\rm{s}} - {\rm{a}}} \right){\rm{s}}}
$$\frac{{\rm{a}}}{{\sqrt {\left( {{\rm{s}} - {\rm{b}}} \right).\left( {{\rm{s}}
- {\rm{c}}} \right)} }}$ [2s – b – c = a]
= 2a $\sqrt {\frac{{\left( {{\rm{s}}\left( {{\rm{s}} -
{\rm{a}}} \right)} \right)}}{{\left( {{\rm{s}} - {\rm{b}}} \right)\left(
{{\rm{s}} - {\rm{c}}} \right)}}} $ = 2a. cot $\frac{{\rm{A}}}{2}$ = R.H.S.
6. If a4 +
b4 + c4 = 2c2 (a2 +
b2), prove that C=450 or 1350.
Solution:
Or, a4 + b4 + c4 =
2c2 (a2 + b2)
Or, (a2 + b2)2 –
2a2b2 – 2c2(a2 + b2)
+ c4 = 0
Or, (a2 + b2)2 –
2.(a2 + b2).c2 + (c2)2 =
2a2.b2.
Or, (a2 + b2 – c2)2 =
2a2b2
Or, ${\left( {\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)^2}$ = $\frac{1}{2}$.
Or, cos2C = $\frac{1}{2}$
Or, cos C = $ \pm \frac{1}{{\sqrt 2 }}$
Hence, C = 45° or 135°.
7) If (a + b + c)(b +
c – a) = 3bc, show that A=600.
Solution:
Here, (a + b + c)(b + c – a) = 3bc
Or, (b + c)2 – a2 = 3bc
Or, b2 + 2bc + c2 – a2 =
3bc
Or, b2 + c2 – a2 =
bc.
Or, $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} -
{{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = $\frac{1}{2}$.
Or, cosA = $\frac{1}{2}$
So, A = 60°
8) If $\frac{1}{{{\rm{a}}
+ {\rm{C}}}}$ + $\frac{1}{{{\rm{b}} + {\rm{c}}}}$ = $\frac{3}{{{\rm{a}} +
{\rm{b}} + {\rm{c}}}}$, show that C=600.
Solution:
Here, $\frac{1}{{{\rm{a}} + {\rm{C}}}}$ +
$\frac{1}{{{\rm{b}} + {\rm{c}}}}$ = $\frac{3}{{{\rm{a}} + {\rm{b}} +
{\rm{c}}}}$
Or, $\frac{{{\rm{b}} + {\rm{c}} + {\rm{a}} +
{\rm{c}}}}{{\left( {{\rm{a}} + {\rm{c}}} \right)\left( {{\rm{b}} + {\rm{c}}}
\right)}}$ = $\frac{3}{{{\rm{a}} + {\rm{b}} + {\rm{c}}}}$
Or, (a + b + 2c)(a + b + c) = 3(a + c)(b + c).
Or, a2 + ab + ac + ab + b2 +
bc + 2ac + 2bc + 2c2 = 3ab + 3ac + 3bc + 3c2.
Or, a2 + b2 – c2 =
ab.
Or, $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} -
{{\rm{c}}^2}}}{{2{\rm{ab}}}} = \frac{1}{2}$
Or, cosC = $\frac{1}{2}$.
So, C = 60°.
9) If the cosines of
two of the angles of a triangle are proportional to the opposite sides, prove
that the triangle is isosceles.
Solution:
Here, Let ABC be a triangle where cosA:cosB = a:b
To show: $\Delta $ABC is isosceles.
Since, cos A : cos B = a:b
Or, $\frac{{{\rm{cosA}}}}{{{\rm{cosB}}}}$ =
$\frac{{\rm{a}}}{{\rm{b}}}$
Or, bcosA = acosB.
Or, b. $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} -
{{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = a. $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} -
{{\rm{b}}^2}}}{{2{\rm{ca}}}}$
Or, b2 + c2 – a2 =
c2 + a2 – b2.
Or, b2 – a2 = a2 –
b2
Or, 2b2 = 2a2
So, a = b
So, the $\Delta $ABC is isosceles.
10) If $\frac{{{\rm{cosA}}
+ 2{\rm{cosC}}}}{{{\rm{cosA}} + 2{\rm{cosB}}}}{\rm{\:}}$ = $\frac{{{\rm{sinB}}}}{{{\rm{sinC}}}}$,
prove that the triangle is either isosceles or right-angled.
Solution:
Here, $\frac{{{\rm{cosA}} + 2{\rm{cosC}}}}{{{\rm{cosA}} +
2{\rm{cosB}}}}{\rm{\:}}$ = $\frac{{{\rm{sinB}}}}{{{\rm{sinC}}}}$
Or, cosA.sinC + 2cosC.sinC = cosA.sinB + 2cosB.sinB.
Or, cosA (sinC – sinB) + sin2C – sin2B = 0
Or, cosA (sinC – sinB) + 2cos $\frac{{2{\rm{C}} +
2{\rm{B}}}}{2}$. Sin $\frac{{\left( {2{\rm{C}} - 2{\rm{B}}} \right)}}{2}$ = 0
Or, cosA.(sinC – sinB) – 2cosA.sin(C – B) =
0 [B + C = π – A]
Or, cosA {sinC – sinB – 2sin(C – B)} = 0
Or, 2sin $\frac{{{\rm{C}} - {\rm{B}}}}{2}$$\left( {\cos
\frac{{{\rm{C}} + {\rm{B}}}}{2} - 2\cos \frac{{{\rm{C}} - {\rm{B}}}}{2}}
\right)$ = 0
So, sin $\frac{{{\rm{C}} - {\rm{B}}}}{2}$ =
0 $\left[ {\left( {\cos \frac{{{\rm{C}} +
{\rm{B}}}}{2} - 2\cos \frac{{{\rm{C}} - {\rm{B}}}}{2} \ne 0} \right)} \right]$
Or, $\frac{{{\rm{C}} - {\rm{B}}}}{2}$ = 0 à C = B
Hence, Either A = 90° or B = C.
So, the triangle is either isosceles or right angled.
11) If 2cosA =
$\frac{{{\rm{sinB}}}}{{{\rm{sinC}}}}$ , show that the triangle is isosceles.
Solution:
Here, 2cosA = $\frac{{{\rm{sinB}}}}{{{\rm{sinC}}}}$
Or, 2.$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} -
{{\rm{a}}^2}}}{{2{\rm{bc}}}}$ =
$\frac{{\rm{b}}}{{2{\rm{R}}.\frac{{\rm{c}}}{{2{\rm{R}}}}}}$
Or, $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} -
{{\rm{a}}^2}}}{{{\rm{bc}}}} = \frac{{\rm{b}}}{{\rm{c}}}$.
Or, b2 + c2 – a2 =
b2
Or, c2 – a2 = 0
So, c = a
So, the triangle is isosceles.
12) Prove that a2,
b2, c2, are in A.P. if Sin A: Sin C = Sin (A-B): Sin (B-C)
Solution:
Here, $\frac{{{\rm{sinA}}}}{{{\rm{sinC}}}}$ = $\frac{{\sin
\left( {{\rm{A}} - {\rm{B}}} \right)}}{{\sin \left( {{\rm{B}} - {\rm{C}}}
\right)}}$
To show: a2,b2,c2 are
in AP.
i.e. b2 = $\frac{{{{\rm{a}}^2} +
{{\rm{c}}^2}}}{2}$
Since, $\frac{{{\rm{sinA}}}}{{{\rm{sinC}}}}$ = $\frac{{\sin
\left( {{\rm{A}} - {\rm{B}}} \right)}}{{\sin \left( {{\rm{B}} - {\rm{C}}}
\right)}}$
Or, sinA.sin(B – C) = sinC. Sin(A – B)
Or, sin(B + C).sin(B – C) = sin (A + B).sin(A – B)
[A+B+C = π]
Or, sin2B – sin2C = sin2A –
sin2B.
Or, $\frac{{{{\rm{b}}^2}}}{{4{{\rm{R}}^2}}}$ –
$\frac{{{{\rm{c}}^2}}}{{4{{\rm{R}}^2}}}$ =
$\frac{{{{\rm{a}}^2}}}{{4{{\rm{R}}^2}}}$ –
$\frac{{{{\rm{b}}^2}}}{{4{{\rm{R}}^2}}}$
Or, b2 – c2 = a2 –
b2
Or, 2b2 = a2 + c2
So, b2 = $\frac{{{{\rm{a}}^2} +
{{\rm{c}}^2}}}{2}$.
13) In any triangle,
prove that:
a) a2cotA
+ b2cotB + c2cotC=4∆
Solution:
L.H.S. = a2cotA
+ b2cotB + c2cotC
= a2. $\frac{{{\rm{cosA}}}}{{{\rm{sinA}}}}$ + b2$\frac{{{\rm{cosB}}}}{{{\rm{sinB}}}}$
+ c2$\frac{{{\rm{cosC}}}}{{{\rm{sinC}}}}$.
= 4R2 sin2A.
$\frac{{{\rm{cosA}}}}{{{\rm{sinA}}}}$ + 4R2$\frac{{{\rm{cosB}}}}{{{\rm{sinB}}}}$
+ 4R2 sin2C $\frac{{{\rm{cosC}}}}{{{\rm{sinC}}}}$.
= 2R2 (2sinA.cosA + 2sinB.cosB + 2sinC.cosC)
= 2R2 (sin2A + sin2B + sin2C)
= 2R2.4sinA.sinB.sinC [A+B+C = π]
= 8R2 . $\frac{{\rm{a}}}{{2{\rm{R}}}}$,
$\frac{{\rm{b}}}{{2{\rm{R}}}}$. $\frac{{\rm{c}}}{{2{\rm{R}}}}$ =
$\frac{{{\rm{abc}}}}{{\rm{R}}}$ = 4∆ =
R.H.S.
b) (a.sinA + b.sinB +
c.sinC)2=(a2 + b2 + c2)(sin2A
+ sin2B + sin2C)
Solution:
L.H.S. = (a.sinA
+ b.sinB + c.sinC)2
= ${\left( {{\rm{a}}.\frac{{\rm{a}}}{{2{\rm{R}}}} +
{\rm{b}}.\frac{{\rm{b}}}{{2{\rm{R}}}} + {\rm{c}}.\frac{{\rm{c}}}{{2{\rm{R}}}}}
\right)^2}$
= ${\left( {\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} +
{{\rm{c}}^2}}}{{2{\rm{R}}}}} \right)^2}$
= (a2 + b2 + c2).
$\left( {\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}}}{{4{{\rm{R}}^2}}}}
\right)$
= (a2 + b2 + c2)
. $\left\{ {{{\left( {\frac{{\rm{a}}}{{2{\rm{R}}}}} \right)}^2} + {{\left(
{\frac{{\rm{b}}}{{2{\rm{R}}}}} \right)}^2} + {{\left(
{\frac{{\rm{c}}}{{2{\rm{R}}}}} \right)}^2}} \right\}$
= (a2 + b2 + c2)(sin2A
+ sin2B + sin2C) =
R.H.S.
c) sinA + sinB + sinC
= $\frac{{\rm{s}}}{{\rm{R}}}$
Solution:
L.H.S. = sinA +
sinB + sinC
= $\frac{{\rm{a}}}{{2{\rm{R}}}}$ + $\frac{{\rm{b}}}{{2{\rm{R}}}}$
+ $\frac{{\rm{c}}}{{2{\rm{R}}}}$
= $\frac{{{\rm{a}} + {\rm{b}} + {\rm{c}}}}{{2{\rm{R}}}}$ =
$\frac{{2{\rm{s}}}}{{2{\rm{R}}}}$
= $\frac{{\rm{s}}}{{\rm{R}}}$ = R.H.S.
d. acosB.cosC +
bcosC.cosA + c.cosA.cosB = $\frac{\Delta }{{\rm{R}}}$
Solution:
L.H.S. = acosB.cosC + bcosC.cosA + c.cosA.cosB
= cosC (a.cosB + b.cosA) + c.cosA.cosB
= c.cosC + c.cosA.cosB [acosB + bcosA = c]
= c.{cosC + cosA.cosB}
= c.{–cosA(A + B) + cosA.cosB} [A + B + C = π]
= c.{–cosA.cosB + sinA.sinB + cosA.cosB}
= c.sinA.sinC
= c. $\frac{{\rm{a}}}{{2{\rm{R}}}}$. $\frac{{\rm{b}}}{{2{\rm{R}}}}$
= $\frac{{{\rm{abc}}}}{{4{\rm{R}}}}$. $\frac{1}{{\rm{R}}}$ = $\frac{\Delta
}{{\rm{R}}}$ = R.H.S.
14) 8R2 =
a2 + b2 + c2, prove that the
triangle is right angled.
Solution:
Here, 8R2 = a2 + b2 +
c2
Or, 8R2 = 4R2 sin2A
+ 4R2sin2B + 4R2 sin2C
[a= 2R sinA]
Or, 2 = sin2A + sin2B + sin2C.
Or, 2 = $\frac{{1 - {\rm{cos}}2{\rm{A}}}}{2}$ + $\frac{{1 -
{\rm{cos}}2{\rm{B}}}}{2}$ + sin2C.
Or, 2 = $\frac{1}{2} + \frac{1}{2} - \frac{1}{2}$ (cos2A +
cos2B) + sin2C.
Or, 2 = 1 – $\frac{1}{2}$.2cos (A + B).cos (A – B) + sin2C.
Or, 2 = 1 + cosC.cos(A – B) + 1 – cos2C
[A + B = π – C]
Or, 0 = cosC(cos (A – B) – cosC)
Or, 0 = cosC [cos(A – B) + cos(A + B)]
Or, 0 = cosC.2cosA.cosB
Or, 0 = cosA.cosB.cosC.
Hence, either cosA = 0 à A = 90°
Or, cos B = 0 à B = 90°.
Or, cosC = 0 à C = 90°.
So, the triangle is right angled.
15) If a = 10, b = 8
and c = 6, find s, $\Delta $,R and sin $\frac{{\rm{B}}}{2}$.
Solution:
Here, a = 10, b =
8 and c = 6
Now, s =
$\frac{{{\rm{a}} + {\rm{b}} + {\rm{c}}}}{2}$ = $\frac{{10 + 8 + 6}}{2}$ = 12
Or, $\Delta $ =
$\sqrt {{\rm{s}}\left( {{\rm{s}} - {\rm{a}}} \right)\left( {{\rm{s}} -
{\rm{b}}} \right)\left( {{\rm{s}} - {\rm{c}}} \right)} $ = $\sqrt {12\left( {12
- 10} \right)\left( {12 - 8} \right)\left( {12 - 6} \right)} $
Or, $\Delta $ = $\sqrt {12.2.4.6} $ = $\sqrt {{{\left( {24}
\right)}^2}} $
So, $\Delta $ = 24.
And R = $\frac{{{\rm{abc}}}}{{4\Delta }}$ =
$\frac{{10.8.6}}{{4.24}}$ = 5
Also, sin
$\frac{{\rm{B}}}{2}$ = $\sqrt {\frac{{\left( {{\rm{s}} - {\rm{c}}}
\right)\left( {{\rm{s}} - {\rm{a}}} \right)}}{{{\rm{ca}}}}} $ = $\sqrt
{\frac{{\left( {12 - {\rm{b}}} \right)\left( {12 - 10}
\right)}}{{6{\rm{*}}10}}} $ = $\sqrt {\frac{{6{\rm{*}}2}}{{6{\rm{*}}10}}} $ =
$\sqrt {\frac{1}{5}} $ = $\frac{1}{{\sqrt 5 }}$.
Hence, s = 12, $\Delta $ = 24, R = 5, sin $\frac{{\rm{B}}}{2}$
= $\frac{1}{{\sqrt 5 }}$