Exercise 17.3
1.Find, From the first principle the derivatives of:
(i)log(ax + b)
Solution:
Let y = log(ax + b)
Let $\Delta {\rm{x}}$ and $\Delta {\rm{y}}$ be the small increments in x and y respectively. Then,
Or, y + $\Delta {\rm{y}}$ = log(a(x + $\Delta {\rm{x}}$) + b)
Or, $\Delta {\rm{y}}$ = log(ax + b + a$\Delta {\rm{x}}$) – log(ax + b)
= log $\frac{{{\rm{ax}} + {\rm{b}} + {\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}}$ = log $\left( {\frac{{{\rm{ax}} + {\rm{b}}}}{{{\rm{ax}} + {\rm{b}}}} + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}}} \right)$ = log $\left( {1 + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}}} \right)$.
Or, $\Delta {\rm{y}}$ = $\frac{{{\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}} - \frac{{{{\left( {\frac{{{\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}}} \right)}^2}}}{2}$ + …. Higher power of $\Delta {\rm{x}}$.
= $\frac{{{\rm{a}}\Delta {\rm{x}}}}{{{\rm{ax}} + {\rm{b}}}}\left[ {1 - \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2\left( {{\rm{x}} + {\rm{b}}} \right)}} + \ldots .} \right]{\rm{\: }}$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\frac{{\rm{a}}}{{{\rm{ax}} + {\rm{b}}}}$$\left[ {1 - \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2\left( {{\rm{ax}} + {\rm{b}}} \right)}} + \ldots } \right]$
Or, $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\rm{a}}}{{{\rm{ax}} + {\rm{b}}}}$$\left[ {1 - \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2\left( {{\rm{ax}} + {\rm{b}}} \right)}} + \ldots .} \right]$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{a}}}{{{\rm{ax}} + {\rm{b}}}}.1{\rm{\: }}$= $\frac{{\rm{a}}}{{{\rm{ax}} + {\rm{b}}}}$.
(ii)
Solution:
Let y = log5 x = log5 e log(x + $\Delta {\rm{x}}$)
Let $\Delta {\rm{x}}$ and $\Delta {\rm{y}}$ be the small increments in x and y respectively. Then,
Or, y + $\Delta {\rm{y}}$ = log5 e log(x + $\Delta {\rm{x}}$)
Or, $\Delta {\rm{y}}$ = log5 e. log(x + $\Delta {\rm{x}}$) – log5e.logx
= log5e {log(x + $\Delta {\rm{x}}$) – logx}
= log5e {log(x + $\Delta {\rm{x}}$) – logx}
= log5e log $\frac{{{\rm{x}} + \Delta {\rm{x}}}}{{\rm{x}}}$ = log5 e. log$\left( {1 + \frac{{\Delta {\rm{x}}}}{{\rm{x}}}} \right)$
= log5e $\{ \frac{{\Delta {\rm{x}}}}{{\rm{x}}} - \frac{{{{\left( {\frac{{\Delta {\rm{x}}}}{{\rm{x}}}} \right)}^2}}}{2} + $..... higher power of $\Delta {\rm{x}}$}
Or, $\Delta {\rm{y}}$ = log5e $\frac{{\Delta {\rm{x}}}}{{\rm{x}}}\left\{ {1 - \frac{{\Delta {\rm{x}}}}{{2{\rm{x}}}} + \ldots .} \right\}$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = log5e $\frac{1}{{\rm{x}}}$$\left\{ {1 - \frac{{\Delta {\rm{x}}}}{{2{\rm{x}}}} + \ldots } \right\}$
Or, $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$ log5 e $\frac{1}{{\rm{x}}}$$\left[ {1 - \frac{{\Delta {\rm{x}}}}{{2{\rm{x}}}} + \ldots .} \right]$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = log5e $\frac{1}{{\rm{x}}}$.1 = log5e $\frac{1}{{\rm{x}}}$.
(iii)
Solution:
Let y = log $\frac{{\rm{x}}}{{10}}$
Let $\Delta {\rm{x}}$ and $\Delta {\rm{y}}$ be the small increments in x and y respectively. Then,
Or, y + $\Delta {\rm{y}}$ = log$\frac{{{\rm{x}} + \Delta {\rm{x}}}}{{10}}$
Or, $\Delta {\rm{y}}$ = log $\frac{{{\rm{x}} + \Delta {\rm{x}}}}{{10}} - \log \frac{{\rm{x}}}{{10}}$ = log $\frac{{\frac{{{\rm{x}} + \Delta {\rm{x}}}}{{10}}}}{{\frac{{\rm{x}}}{{10}}}}$
= log $\left( {1 + \frac{{\Delta {\rm{x}}}}{{\rm{x}}}} \right)$ = $\frac{{\Delta {\rm{x}}}}{{\rm{x}}} - \frac{{{{\left( {\frac{{\Delta {\rm{x}}}}{{\rm{x}}}} \right)}^2}}}{2} + $….. higher power of $\Delta {\rm{x}}$.
Or, $\Delta {\rm{y}}$ = $\frac{{\Delta {\rm{x}}}}{{\rm{x}}}\left\{ {1 - \frac{{\Delta {\rm{x}}}}{{\rm{x}}} + \ldots } \right\}$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\frac{1}{{\rm{x}}}\left\{ {1 - \frac{{\Delta {\rm{x}}}}{{2{\rm{x}}}} + \ldots .} \right\}$
Or, $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$ log5 e $\frac{1}{{\rm{x}}}$$\left[ {1 + \frac{{\Delta {\rm{x}}}}{{2{\rm{x}}}} + \ldots .} \right]$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\frac{1}{{\rm{x}}}$.1 = $\frac{1}{{\rm{x}}}$.
(iv)
Solution:
Let y = eax+b
Let $\Delta {\rm{x}}$ and $\Delta {\rm{y}}$ be the small increments in x and y respectively. Then,
Or, y + $\Delta {\rm{y}}$ = ${{\rm{e}}^{{\rm{a}}\left( {{\rm{x}} + \Delta {\rm{x}}} \right) + {\rm{b}}}}$
Or, $\Delta {\rm{y}}$ = ${{\rm{e}}^{{\rm{ax}} + {\rm{b}} + {\rm{a}}\Delta {\rm{x}}}} - {{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}$
= eax + b.${{\rm{e}}^{{\rm{a}}\Delta {\rm{x}}}}$ – eax+b = eax + b(${{\rm{e}}^{{\rm{a}}\Delta {\rm{x}}}}$ – 1)
= eax +b $\left\{ {1 + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{1!}} + \frac{{{{\left( {{\rm{a}}\Delta {\rm{x}}} \right)}^2}}}{{2!}} + \ldots . - 1} \right\}$
= eax + b$\left\{ {{\rm{a}}\Delta {\rm{x}} + \frac{{{{\left( {{\rm{a}}\Delta {\rm{x}}} \right)}^2}}}{{2!}} + \ldots } \right\}$
Or, $\Delta {\rm{y}}$ = eax + b. a$\Delta {\rm{x}}$$\left\{ {1 + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2!}} + \ldots } \right\}$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = eax + b.a$\left\{ {1 + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2!}} + \ldots .} \right\}$
Or, $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$ eax + b $\left\{ {1 + \frac{{{\rm{a}}\Delta {\rm{x}}}}{{2!}} + \ldots } \right\}$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = eax + b.a . 1 = a.eax + b.
(v)
Solution:
Let y = ex/3
Let $\Delta {\rm{x}}$ and $\Delta {\rm{y}}$ be the small increments in x and y respectively. Then,
Or, y + $\Delta {\rm{y}}$ = ${{\rm{e}}^{\frac{{{\rm{x}} + \Delta {\rm{x}}}}{3}}}$
Or, $\Delta {\rm{y}}$ = ${{\rm{e}}^{\frac{{{\rm{x}} + \Delta {\rm{x}}}}{3}}} - {{\rm{e}}^{\frac{{\rm{x}}}{3}}}$ = ${{\rm{e}}^{\frac{{\rm{x}}}{3} + \frac{{\Delta {\rm{x}}}}{3}}} - {{\rm{e}}^{\frac{{\rm{x}}}{3}}}$
= ex/3.${{\rm{e}}^{\frac{{\Delta {\rm{x}}}}{3}}}$ – ex/3 = ex/3(${{\rm{e}}^{\frac{{\Delta {\rm{x}}}}{3}}}$ – 1)
= ex/3 $\left\{ {1 + \frac{{\Delta {\rm{x}}}}{3} + \frac{{{{\left( {\Delta {\rm{x}}/3} \right)}^2}}}{{2!}} + \ldots . - 1} \right\}$
= ex/3$\left\{ {\frac{{\Delta {\rm{x}}}}{3} + \frac{{{{\left( {\frac{{\Delta {\rm{x}}}}{3}} \right)}^2}}}{{2!}} + \ldots } \right\}$
Or, $\Delta {\rm{y}}$ = ex/3. $\frac{{\Delta {\rm{x}}}}{3}$$\left\{ {1 + \frac{{\frac{{\Delta {\rm{x}}}}{3}}}{{2!}} + \ldots } \right\}$
Or, $\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\frac{1}{3}$ e1/3$\left\{ {1 + \frac{{\frac{{\Delta {\rm{x}}}}{3}}}{{2!}} + \ldots .} \right\}$
Or, $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$$\frac{{\Delta {\rm{y}}}}{{\Delta {\rm{x}}}}$ = $\Delta {\rm{x}}\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}0$.ex/3$\left\{ {1 + \frac{{\frac{{\Delta {\rm{x}}}}{3}}}{{2!}} + \ldots .} \right\}$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{3}$.ex/3.1 = $\frac{1}{3}$ex/3.
2. Find the derivative of:
(i)
Solution:
Let y = log(sinx)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log.sinx) = $\frac{{{\rm{d}}\left( {{\rm{logsinx}}} \right)}}{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{\sin {\rm{x}}}}$.cosx = cotx.
(ii)
Solution:
Let y = log(x + tanx)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(x + tanx)) = $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {{\rm{x}} + {\rm{tanx}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{x}} + {\rm{tanx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{x}} + {\rm{tanx}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{{\rm{x}} + {\rm{tanx}}}}\left\{ {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\rm{x}} \right) + \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{tanx}}} \right)} \right\}$ = $\frac{{1 + {{\sec }^2}{\rm{x}}}}{{{\rm{x}} + {\rm{tanx}}}}$.
(iii)
Solution:
Let y = log(1 + e5x)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(1 + e5x)) = $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {1 + {{\rm{e}}^{5{\rm{x}}}}} \right)} \right)}}{{{\rm{d}}\left( {1 + {{\rm{e}}^{5{\rm{x}}}}} \right)}}.\frac{{{\rm{d}}\left( {1 + {{\rm{e}}^{5{\rm{x}}}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{1 + {{\rm{e}}^{5{\rm{x}}}}}}\left\{ {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( 1 \right) + \frac{{{\rm{d}}\left( {{{\rm{e}}^{5{\rm{x}}}}} \right)}}{{{\rm{d}}\left( {5{\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {5{\rm{x}}} \right)}}{{{\rm{dx}}}}} \right\}$ = $\frac{1}{{1 + {{\rm{e}}^{5{\rm{x}}}}}}\left( {0 + {{\rm{e}}^{5{\rm{x}}}}.5.1} \right)$ = $\frac{{5{{\rm{e}}^{5{\rm{x}}}}}}{{1 + {{\rm{e}}^{5{\rm{x}}}}}}$.
(iv)
Solution:
Let y = log(log x)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(logx)) = $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {{\rm{logx}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{logx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{logx}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{{\rm{logx}}}}.\frac{1}{{\rm{x}}} = \frac{1}{{{\rm{xlogx}}}}$.
(v)
Solution:
Let y = log(sec x)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(sec x)) = $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {\sec {\rm{x}}} \right)} \right)}}{{{\rm{d}}\left( {\sec {\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{secx}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{{\rm{secx}}}}.$sec x.tan x = tanx.
(vi)
Solution:
Let y = log(1 + sin2x)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(1 + sin2x)) = $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {1 + {{\sin }^2}{\rm{x}}} \right)} \right)}}{{{\rm{d}}\left( {1 + {\rm{si}}{{\rm{n}}^2}{\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {1 + {{\sin }^2}{\rm{x}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{1 + {{\sin }^2}{\rm{x}}}}.\left\{ {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( 1 \right) + \frac{{{\rm{d}}\left( {{{\sin }^2}{\rm{x}}} \right)}}{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}{{{\rm{dx}}}}} \right\}$
= $\frac{1}{{1 + {{\sin }^2}{\rm{x}}}}$(0 + 2sinx.cosx) = $\frac{{2{\rm{sinx}}.{\rm{cosx}}}}{{1 + {{\sin }^2}{\rm{x}}}}$.
(vii)
Solution:
Let y = log(eax + e–ax)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(eax + e–ax))= $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {{{\rm{e}}^{{\rm{ax}}}}{\rm{\: }} + {\rm{\: }}{{\rm{e}}^{ - {\rm{ax}}}}} \right)} \right)}}{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}} + {{\rm{e}}^{ - {\rm{ax}}}}} \right)}}.\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}} + {{\rm{e}}^{ - {\rm{ax}}}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{{{\rm{e}}^{{\rm{ax}}}} + {{\rm{e}}^{ - {\rm{ax}}}}}}.\left\{ {\frac{{{\rm{d}}{{\rm{e}}^{{\rm{ax}}}}}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}} + \frac{{{\rm{d}}\left( {{{\rm{e}}^{ - {\rm{ax}}}}} \right)}}{{{\rm{d}}\left( { - {\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( { - {\rm{ax}}} \right)}}{{{\rm{dx}}}}} \right\}$
= $\frac{1}{{{{\rm{e}}^{{\rm{ax}}}} + {{\rm{e}}^{ - {\rm{ax}}}}}}$(eax.a.1 + e–ax.(–a).1) = $\frac{{{\rm{a}}\left( {{{\rm{e}}^{{\rm{ax}}}} - {{\rm{e}}^{ - {\rm{ax}}}}} \right)}}{{{{\rm{e}}^{{\rm{ax}}}} + {{\rm{e}}^{ - {\rm{ax}}}}}}$.
(viii)
Solution:
Let y = log$\left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log$\left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)$)= $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)} \right)}}{{{\rm{d}}\left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)}}.\frac{{{\rm{d}}\left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}}}.\left\{ {\frac{{{\rm{d}}\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} }}{{{\rm{d}}\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)}}.\frac{{{\rm{d}}\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)}}{{{\rm{dx}}}} + \frac{{{\rm{d}}\left( {\rm{b}} \right)}}{{{\rm{dx}}}}} \right\}$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$= $\frac{1}{{\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}}}\left\{ {\frac{1}{{2\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} }}.2{\rm{x}} + 0} \right\}$
= $\frac{{\rm{x}}}{{\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} \left( {\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} + {\rm{b}}} \right)}}$.
(ix)
Solution:
Let y = log$\left( {\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} } \right)$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log$\left( {\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} } \right)$)= $\frac{{{\rm{d}}\left( {{\rm{log}}\left( {\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} } \right)} \right)}}{{{\rm{d}}\left( {\sqrt {{\rm{a}} + {\rm{x}}} - \sqrt {{\rm{a}} - {\rm{x}}} } \right)}}.\frac{{{\rm{d}}\left( {\sqrt {{\rm{a}} + {\rm{x}}} - \sqrt {{\rm{a}} - {\rm{x}}} } \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} }}.\left\{ {\frac{{{\rm{d}}\sqrt {{\rm{a}} + {\rm{x}}} }}{{{\rm{d}}\left( {{\rm{a}} + {\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{a}} + {\rm{x}}} \right)}}{{{\rm{dx}}}} + \frac{{{\rm{d}}\sqrt {{\rm{a}} - {\rm{x}}} }}{{{\rm{d}}\left( {{\rm{a}} - {\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{x}} - {\rm{a}}} \right)}}{{{\rm{dx}}}}} \right\}$
= $\frac{1}{{\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} }}\left\{ {\frac{1}{{2\sqrt {{\rm{a}} + {\rm{x}}} }}.1 + \frac{1}{{2\sqrt {{\rm{a}} - {\rm{x}}} }}.\left( { - 1} \right)} \right\}$
= $\frac{1}{{2\left( {\sqrt {{\rm{a}} + {\rm{x}}} + \sqrt {{\rm{a}} - {\rm{x}}} } \right)}}\left( {\frac{1}{{\sqrt {{\rm{a}} + {\rm{x}}} }} - \frac{1}{{\sqrt {{\rm{a}} - {\rm{x}}} }}} \right)$.
(x)
Solution:
Let y = ln|x – 4|
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{d}}\left[ {\ln \left| {{\rm{x}} - 4} \right|} \right]}}{{{\rm{dx}}}}$ [if x – 4 > 0]
= $\frac{{{\rm{d}}.\ln \left( {{\rm{x}} - 4} \right)}}{{{\rm{d}}\left( {{\rm{x}} - 4} \right)}}.\frac{{{\rm{d}}\left( {{\rm{x}} - 4} \right)}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} - 4}}.1$ = $\frac{1}{{{\rm{x}} - 4}}$.
Again, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{\rm{d}}\left[ {\ln \left| {{\rm{x}} - 4} \right|} \right]}}{{{\rm{dx}}}}$.
= $\frac{{\rm{d}}}{{{\rm{dx}}}}{\rm{ln}}\left( {4 - {\rm{x}}} \right)$ [If x – 4 < 0, then 4 – x > 0]
= $\frac{{{\rm{dln}}\left( {4 - {\rm{x}}} \right)}}{{{\rm{d}}\left( {4 - {\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {4 - {\rm{x}}} \right)}}{{{\rm{dx}}}}$ = $\frac{1}{{4 - {\rm{x}}}}.\left( { - 1} \right){\rm{\: }}$= $\frac{1}{{{\rm{x}} - 4}}$.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} - 4}}$.
3. FInd the differential coefficient of:
(i)
Solution:
Let y = esinx
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(esinx) = $\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{sinx}}}}} \right)}}{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{sinx}}} \right)}}{{{\rm{dx}}}}$ = esinx.cosx.
(ii)
Solution:
Let y = ${{\rm{e}}^{\sqrt {{\rm{cosx}}} }}$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(${{\rm{e}}^{\sqrt {{\rm{cosx}}} }}$) = $\frac{{{\rm{d}}\left( {{{\rm{e}}^{\sqrt {{\rm{cosx}}} }}} \right)}}{{{\rm{d}}\left( {\sqrt {{\rm{cosx\: }}} } \right)}}.\frac{{{\rm{d}}\left( {\sqrt {{\rm{cosx}}} } \right)}}{{{\rm{d}}\left( {{\rm{cosx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{cosx}}} \right)}}{{{\rm{dx}}}}$
= ${{\rm{e}}^{\sqrt {{\rm{cosx}}} }}.\frac{1}{{2\sqrt {{\rm{cosx}}} }}$.(–sinx) = $ - \frac{{{{\rm{e}}^{\sqrt {{\rm{cosx}}} }}.{\rm{sinx}}}}{{2\sqrt {{\rm{cosx}}} }}$.
(iii)
Solution:
Let y = ${{\rm{e}}^{\left( {1 + {\rm{logx}}} \right)}}$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(${{\rm{e}}^{1 + {\rm{logx}}}}$) = $\frac{{{\rm{d}}\left( {{{\rm{e}}^{1 + {\rm{logx}}}}} \right)}}{{{\rm{d}}\left( {1 + {\rm{logx}}} \right)}}.\frac{{{\rm{d}}\left( {1 + {\rm{logx}}} \right)}}{{{\rm{dx}}}}$
= ${{\rm{e}}^{1 + {\rm{logx}}}}.\left\{ {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( 1 \right) + \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{logx}}} \right)} \right\}$ = e1 + logx.$\frac{1}{{\rm{x}}}$ = $\frac{{{{\rm{e}}^{1 + {\rm{logx}}}}}}{{\rm{x}}}$.
(iv)
Solution:
Let y = ${{\rm{e}}^{{\rm{sin}}\left( {{\rm{logx}}} \right)}}$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(${{\rm{e}}^{{\rm{sin}}\left( {{\rm{logx}}} \right)}}$) = $\frac{{{\rm{d}}\left( {{{\rm{e}}^{\sin \left( {{\rm{logx}}} \right)}}} \right)}}{{{\rm{d}}\left( {\sin \left( {{\rm{logx}}} \right)} \right)}}.\frac{{{\rm{d}}\left( {\sin \left( {{\rm{logx}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{logx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{logx}}} \right)}}{{{\rm{dx}}}}$
= ${{\rm{e}}^{{\rm{sin}}.\left( {{\rm{logx}}} \right)}}$.cos(logx).$\frac{1}{{\rm{x}}}$ = $\frac{1}{{\rm{x}}}$.esin(logx).cos(logx).
(v)
Solution:
Let y =
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(tan(log x))= $\frac{{{\rm{d}}\left( {{\rm{tan}}\left( {{\rm{log\: x}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{logx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{logx}}} \right)}}{{{\rm{dx}}}}$
= sec2(logx).$\frac{1}{{\rm{x}}}$ = $\frac{1}{{\rm{x}}}$sec2(logx).
(vi)
Solution:
Let y = sin(1 + eax)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(sin(1 + eax))= $\frac{{{\rm{d}}\left( {{\rm{sin}}\left( {1 + {{\rm{e}}^{{\rm{ax}}}}} \right)} \right)}}{{{\rm{d}}\left( {1 + {{\rm{e}}^{{\rm{ax}}}}} \right)}}.\frac{{{\rm{d}}\left( {1 + {{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{dx}}}}$
= cos(1 + eax) $\left\{ {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( 1 \right) + \frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}}} \right\}$
= cos(1 + eax){0 + eax.a.1} = aeax.cos(1 + eax).
(vii)
Solution:
Let y = cos(log.secx)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(cos(log.secx)) = $\frac{{{\rm{d}}\left( {{\rm{cos}}\left( {{\rm{log}}.{\rm{secx}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{log}}.{\rm{secx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{log}}.{\rm{secx}}} \right)}}{{{\rm{d}}\left( {{\rm{secx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{secx}}} \right)}}{{{\rm{dx}}}}$
= – sin(log.secx).$\frac{1}{{{\rm{secx}}}}$.secx.tanx = – tanx.sin(log.sec x).
(viii) sec(log tan x)
Solution:
Let y = sec(log.tanx)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(sec(log.tanx)) = $\frac{{{\rm{d}}\left( {{\rm{sec}}\left( {{\rm{log}}.{\rm{tanx}}} \right)} \right){\rm{\: }}}}{{{\rm{d}}\left( {{\rm{log}}.{\rm{tanx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{log}}.{\rm{tanx}}} \right)}}{{{\rm{d}}\left( {{\rm{tan}}.{\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{tan}}.{\rm{x}}} \right)}}{{{\rm{dx}}}}$
= sec.(log.tanx).tan(log.tanx).$\frac{1}{{{\rm{tanx}}}}$.sec2x
= $\frac{{\sec \left( {{\rm{log}}.{\rm{tanx}}} \right).\tan \left( {{\rm{log}}.{\rm{tanx}}} \right){{\sec }^2}{\rm{x}}}}{{{\rm{tanx}}}}$.
(ix)
Solution:
Let y = sin.log.sin$.{{\rm{e}}^{{{\left( {\rm{x}} \right)}^2}}}$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(sin.log.sin$.{{\rm{e}}^{{{\left( {\rm{x}} \right)}^2}}}$)) = $\frac{{{\rm{d}}\left( {{\rm{sin}}.{\rm{log}}.{\rm{sin}}.{{\rm{e}}^{{{\left( {\rm{x}} \right)}^2}}}} \right)}}{{{\rm{d}}\left( {{\rm{log}}.{\rm{sin}}.{{\rm{e}}^{{{\rm{x}}^2}}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{log}}.{\rm{sin}}{{\rm{e}}^{\rm{x}}}^2} \right)}}{{{\rm{d}}\left( {{{\rm{e}}^{{{\rm{x}}^2}}}} \right)}}.\frac{{{\rm{d}}{{\rm{e}}^{{{\rm{x}}^2}}}}}{{{\rm{d}}{{\rm{x}}^2}}}.\frac{{{\rm{d}}\left( {{{\rm{x}}^2}} \right)}}{{{\rm{dx}}}}$
= cos.log.sin.${{\rm{e}}^{{{\rm{x}}^2}}}$. $\frac{1}{{\sin {{\rm{e}}^{{{\rm{x}}^2}}}}}$.cos ${{\rm{e}}^{{{\rm{x}}^2}}}$.${{\rm{e}}^{{{\rm{x}}^2}}}$.2x
= 2x.${{\rm{e}}^{{{\rm{x}}^2}}}$.cot ${{\rm{e}}^{{{\rm{x}}^2}}}$.cos.log.sin${{\rm{e}}^{{{\rm{x}}^2}}}{\rm{\: }}$.
4. Differentiate the following with respect to x:
(i)
Solution:
Let y = x2log(1 + x)
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}${x2.log(1 + x)}
= x2.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(log(1 + x)) + log(1 + x).$\frac{{\rm{d}}}{{{\rm{dx}}}}$(x2)
= x2. $\frac{{{\rm{d}}\left( {\log \left( {1 + {\rm{x}}} \right)} \right)}}{{{\rm{d}}\left( {1 + {\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {1 + {\rm{x}}} \right)}}{{{\rm{dx}}}} + \log \left( {1 + {\rm{x}}} \right).2{\rm{x}}$
= x2.$\frac{1}{{1 + {\rm{x}}}}$.1 + 2xlog(1 + x) = $\frac{{{{\rm{x}}^2}}}{{1 + {\rm{x}}}}$ + 2x.log(1 + x).
(ii)
Solution:
Let y = x5.eax
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(x5.eax)
= x5.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(x5.eax) = x5.$\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}}$ + eax$\frac{{\rm{d}}}{{{\rm{dx}}}}$(x5)
= x5.eax.a.1 + eax.5x4 = 5x4.eax + ax5.eax.
(iii)
Solution:
Let y = sinax.logx
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(sinax.logx)
= sinax.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(logx) = logx.$\frac{{{\rm{d}}\left( {{\rm{sinax}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}}$
= $\frac{{{\rm{sinax}}}}{{\rm{x}}}$ + logx.cosax.a = $\frac{{{\rm{sinax}}}}{{\rm{x}}}$ + a.cosax.logx
(iv)
Solution:
Let y = eax.cosbx
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}$(eax.cosbx)
= eax.$\frac{{{\rm{d}}\left( {{\rm{cosbx}}} \right)}}{{{\rm{d}}\left( {{\rm{bx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{bx}}} \right)}}{{{\rm{dx}}}}$ + cosbx.$\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}}$
= eax.(–sinbx).b.1 + cosbx.eax.a.1 = (a.cosbx – b.sinbx).eax.
(v)
Solution:
Let y = (tanx + x2).logx
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}${(tanx + x2).logx}
= (tanx + x2)$\frac{{\rm{d}}}{{{\rm{dx}}}}$(log x) + logx $\frac{{\rm{d}}}{{{\rm{dx}}}}$(tanx + x2).
= (tanx + x2).$\frac{1}{{\rm{x}}}$ + logx.(sec2x + 2x)
= $\frac{{{\rm{tanx}} + {{\rm{x}}^2}}}{{\rm{x}}}$ + (Sec2x + 2x)logx.
(vi)
Solution:
Let y = (sinx + cosx)eax
Differentiating both sides w.r.t.to x.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}${(sinx + cosx)eax }
= (sinx + cosx)$\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}}$ + eax.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(sinx + cosx)
= (sinx + cosx).eax.a.1 + eax.(cosx – sinx)
= a.(sinx + cosx).eax + (cosx – sinx).eax.
5. Calculate the derivative of:
(i)
Solution:
Let y = $\frac{{{\rm{logx}}}}{{{\rm{sinx}}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{logx}}}}{{{\rm{sinx}}}}} \right)$ = $\frac{{{\rm{sinx}}.\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{logx}}} \right) - {\rm{logx}}.\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{sinx}}} \right)}}{{{{\sin }^2}{\rm{x}}}}$.
= $\frac{{{\rm{sinx}}.\frac{1}{{\rm{x}}} - {\rm{logx}}.{\rm{cosx}}}}{{{{\sin }^2}{\rm{x}}}}$ = $\frac{{{\rm{sinx}} - {\rm{xcosx}}.{\rm{logx}}}}{{{\rm{x}}.{{\sin }^2}{\rm{x}}}}$.
(ii)
Solution:
Let y = $\frac{{{\rm{log}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}{{{{\rm{e}}^{{\rm{px}}}}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{log}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}{{{{\rm{e}}^{{\rm{px}}}}}}} \right)$ = $\frac{{{{\rm{e}}^{{\rm{px}}}}\frac{{{\rm{d}}\left( {\log \left( {{\rm{ax}} + {\rm{b}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}{{{\rm{dx}}}} - \log \left( {{\rm{ax}} + {\rm{b}}} \right).\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{px}}}}} \right)}}{{{\rm{d}}\left( {{\rm{px}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{px}}} \right)}}{{{\rm{dx}}}}{\rm{\: \: \: \: \: }}}}{{{{\left( {{{\rm{e}}^{{\rm{px}}}}} \right)}^2}}}$.
= $\frac{{{{\rm{e}}^{{\rm{px}}}}.\frac{1}{{{\rm{ax}} + {\rm{b}}}}.{\rm{a}}.1 - \log \left( {{\rm{ax}} + {\rm{b}}} \right).{{\rm{e}}^{{\rm{px}}}}.{\rm{p}}.1}}{{{{\left( {{{\rm{e}}^{{\rm{px}}}}} \right)}^2}}}$ = $\frac{{{{\rm{e}}^{{\rm{px}}}}\left\{ {\frac{{\rm{a}}}{{{\rm{ax}} + {\rm{b}}}} - {\rm{plog}}\left( {{\rm{ax}} + {\rm{b}}} \right)} \right\}}}{{{{\left( {{{\rm{e}}^{{\rm{px}}}}} \right)}^2}}}$. = $\frac{{{\rm{a}} - {\rm{p}}.\left( {{\rm{ax}} - {\rm{b}}} \right).\log \left( {{\rm{ax}} + {\rm{b}}} \right)}}{{\left( {{\rm{ax}} + {\rm{b}}} \right).{{\rm{e}}^{{\rm{px}}}}}}$.
(iii)
Solution:
Let y = $\frac{{{{\rm{e}}^{{\rm{ax}}}}}}{{{\rm{cosbx}}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{{\rm{e}}^{{\rm{ax}}}}}}{{{\rm{cosbx}}}}} \right)$ = $\frac{{{\rm{cosbx}}.\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}} - {{\rm{e}}^{{\rm{ax}}}}.\frac{{{\rm{d}}\left( {{\rm{cosbx}}} \right)}}{{{\rm{d}}\left( {{\rm{bx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{bx}}} \right)}}{{{\rm{dx}}}}{\rm{\: \: \: \: \: }}}}{{{{\cos }^2}{\rm{bx}}}}$.
= $\frac{{{\rm{cos}}.{\rm{bx}}.{{\rm{e}}^{{\rm{ax}}}}.{\rm{a}}.1 - {{\rm{e}}^{{\rm{ax}}}}.\left( { - {\rm{sinbx}}} \right).{\rm{b}}.1}}{{{{\cos }^2}{\rm{bx}}}}$ = $\frac{{\left( {{\rm{acosbx}} + {\rm{bsinbx}}} \right).{{\rm{e}}^{{\rm{ax}}}}}}{{{{\cos }^2}{\rm{bx}}}}$.
(iv)
Solution:
Let y = $\frac{{{\rm{sinax}}}}{{1 + {\rm{logx}}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{sinax}}}}{{1 + {\rm{logx}}}}} \right)$ = $\frac{{\left( {1 + {\rm{logx}}} \right).\frac{{{\rm{d}}\left( {{\rm{sinax}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}}} \right)}}{{{\rm{dx}}}} - {\rm{sinax}}.\frac{{{\rm{d}}\left( {1 + {\rm{logx}}} \right)}}{{{\rm{d}}\left( {\rm{x}} \right)}}{\rm{\: \: \: \: \: }}}}{{{{\cos }^2}{\rm{bx}}}}$.
= $\frac{{\left( {1 + {\rm{logx}}} \right).{\rm{cosax}}.{\rm{a}}.1 - {\rm{sinax}}.\frac{1}{{\rm{x}}}}}{{{{\left( {1 + {\rm{logx}}} \right)}^2}}}$ = $\frac{{{\rm{ax}}.{\rm{cosax}}\left( {1 + {\rm{logx}}} \right) - {\rm{sinax}}}}{{{\rm{x}}{{\left( {1 + {\rm{logx}}} \right)}^2}}}$.
(v)
Solution:
Let y = $\frac{{{\rm{logx}}}}{{{{\rm{a}}^2} + {{\rm{x}}^2}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{logx}}}}{{{{\rm{a}}^2} + {{\rm{x}}^2}}}} \right)$ = $\frac{{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right).\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{logx}}} \right) - {\rm{logx}}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right){\rm{\: \: \: \: \: }}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)}^2}}}$.
= $\frac{{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right).\frac{1}{{\rm{x}}} - {\rm{logx}}.2{\rm{x}}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)}^2}}}$ = $\frac{{{{\rm{a}}^2} + {{\rm{x}}^2} - 2{{\rm{x}}^2}.{\rm{logx}}}}{{{\rm{x}}{{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)}^2}}}$.
(vi)
Solution:
Let y = $\frac{{{{\rm{x}}^{\rm{n}}}}}{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}}}$
Differentiating both sides w.r.t. x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{{\rm{x}}^{\rm{n}}}}}{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}}}} \right)$ = $\frac{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}.\frac{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}}{{{\rm{dx}}}} - {{\rm{x}}^{\rm{n}}}\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}} \right)}}{{{\rm{d}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{ax}} + {\rm{b}}} \right)}}{{{\rm{dx}}}}{\rm{\: \: \: \: \: \: }}}}{{{{\left( {{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}} \right)}^2}}}$.
= $\frac{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}.{\rm{n}}{{\rm{x}}^{{\rm{n}} - 1}} - {{\rm{x}}^{\rm{n}}}.{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}.{\rm{a}}.1}}{{{{\left( {{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}} \right)}^2}}}$ = $\frac{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}.\left( {{\rm{n}} - {\rm{ax}}} \right){{\rm{x}}^{{\rm{n}} - 1}}}}{{{{\left( {{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}} \right)}^2}}}$ = $\frac{{\left( {{\rm{n}} - {\rm{ax}}} \right){{\rm{x}}^{{\rm{n}} - 1}}}}{{{{\rm{e}}^{{\rm{ax}} + {\rm{b}}}}}}$.
(i)xy=
Solution:
xy = log(x2 + y2)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(xy) = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left\{ {\log \left( {{{\rm{x}}^2} + {{\rm{y}}^2}} \right)} \right\}$.
Or, ${\rm{x}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}.\frac{{{\rm{dx}}}}{{{\rm{dx}}}} = \frac{{{\rm{d}}\left( {\log \left( {{{\rm{x}}^2} + {{\rm{y}}^2}} \right)} \right)}}{{{\rm{d}}\left( {{{\rm{x}}^2} + {{\rm{y}}^2}} \right)}}.\frac{{{\rm{d}}\left( {{{\rm{x}}^2} + {{\rm{y}}^2}} \right)}}{{{\rm{dx}}}}$
Or, ${\rm{x}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}.1 = \frac{1}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}\left\{ {\frac{{{\rm{d}}{{\rm{x}}^2}}}{{{\rm{dx}}}} + \frac{{{\rm{d}}{{\rm{y}}^2}}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right\}$
Or, ${\rm{x}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y = $\frac{1}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}\left\{ {2{\rm{x}} + 2{\rm{y}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right\}$.
Or, x.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y = $\frac{{2{\rm{x}}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}$ + $\frac{{2{\rm{y}}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.
Or, x.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ – $\frac{{2{\rm{y}}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}} - {\rm{y}}$.
Or, $\frac{{{{\rm{x}}^3} + {\rm{x}}{{\rm{y}}^2} - 2{\rm{y}}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}} - {{\rm{x}}^2}{\rm{y}} - {{\rm{y}}^3}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}}$.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{2{\rm{x}} - {{\rm{x}}^2}{\rm{y}} - {{\rm{y}}^3}}}{{{{\rm{x}}^3} + {\rm{x}}{{\rm{y}}^2} - 2{\rm{y}}}}{\rm{\: \: }}$
(ii)
Solution:
x2 + y2 = log(x + y)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(x2 + y2) = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left\{ {{\rm{log}}\left( {{\rm{x\: }} + {\rm{\: y}}} \right)} \right\}$.
Or, $\frac{{{\rm{d}}{{\rm{x}}^2}}}{{{\rm{dx}}}} + \frac{{{\rm{d}}{{\rm{y}}^2}}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{{\rm{d}}\left( {\log \left( {{\rm{x}} + {\rm{y}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{x}} + {\rm{y}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{x}} + {\rm{y}}} \right)}}{{{\rm{dx}}}}$
Or, 2x + 2y. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} + {\rm{y}}}}$.$\left\{ {1 + \frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right\}$.
Or,${\rm{\: }}$2x + 2y.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} + {\rm{y}}}}$ + $\frac{1}{{{\rm{x}} + {\rm{y}}}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$.
Or, 2y. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ – $\frac{1}{{{\rm{x}} + {\rm{y}}}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} + {\rm{y}}}}$ – 2x.
Or, $\left( {2{\rm{y}} - \frac{1}{{{\rm{x}} + {\rm{y}}}}} \right)\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{{\rm{x}} + {\rm{y}}}}$ – 2x
Or, $\frac{{2{\rm{xy}} + 2{{\rm{y}}^2} - 1}}{{{\rm{x}} + {\rm{y}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{1 - 2{{\rm{x}}^2} - 2{\rm{xy}}}}{{{\rm{x}} + {\rm{y}}}}{\rm{\: }}$
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{1 - 2{{\rm{x}}^2} - 2{\rm{xy}}}}{{2{\rm{xy}} + 2{{\rm{y}}^2} - 1}}$.
(iii)
Solution:
exy = xy
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(exy) = $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{xy}}} \right)$.
Or, $\frac{{{\rm{d}}\left( {{{\rm{e}}^{{\rm{xy}}}}} \right)}}{{{\rm{d}}\left( {{\rm{xy}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{xy}}} \right)}}{{{\rm{dx}}}} = \frac{1}{{{\rm{dx}}}}.\left( {{\rm{xy}}} \right)$
Or, exy$\left( {{\rm{x}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}.\frac{{{\rm{dx}}}}{{{\rm{dx}}}}} \right)$= x.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y.$\frac{{{\rm{dx}}}}{{{\rm{dx}}}}$
Or,exy x. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + exy.y.1 = x$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y.1
Or, exy.x $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ – x. $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y – yexy
Or, x(exy – 1)$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = –y(exy – 1).
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $ - \frac{{\rm{y}}}{{\rm{x}}}$.
(iv)
Solution:
x = ecos2t
Differentiating both sides w.r.t. ‘t’.
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}{{\rm{e}}^{{\rm{cos}}2{\rm{t}}}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}{{\rm{e}}^{{\rm{cos}}2{\rm{t}}}}}}{{{\rm{d}}\left( {{\rm{cos}}2{\rm{t}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{cos}}2{\rm{t}}} \right)}}{{{\rm{dt}}}}$
= ecos2t. $\frac{{{\rm{d}}\left( {{\rm{cos}}2{\rm{t}}} \right)}}{{{\rm{d}}\left( {2{\rm{t}}} \right)}}.\frac{{{\rm{d}}\left( {2{\rm{t}}} \right)}}{{{\rm{dt}}}}$ = ecos2t.(–sin2t).2 = –2.sin2t.e
Again, y = esin2t
Differentiating both sides w.r.t. to ‘t’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}{{\rm{e}}^{{\rm{sin}}2{\rm{t}}}}}}{{{\rm{d}}\left( {{\rm{sin}}2{\rm{t}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{sin}}2{\rm{t}}} \right)}}{{{\rm{d}}\left( {2{\rm{t}}} \right)}}.\frac{{{\rm{d}}\left( {2{\rm{t}}} \right)}}{{{\rm{dt}}}}$
Or, exy$\left( {{\rm{x}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}.\frac{{{\rm{dx}}}}{{{\rm{dx}}}}} \right)$= x.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ + y.$\frac{{{\rm{dx}}}}{{{\rm{dx}}}}$
= esin2t.cos 2t.2 = 2cos2t.esin2t.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{\frac{{{\rm{dy}}}}{{{\rm{dt}}}}}}{{\frac{{{\rm{dx}}}}{{{\rm{dt}}}}}} = \frac{{2{\rm{cos}}2{\rm{t}}.{{\rm{e}}^{{\rm{sin}}2{\rm{t}}}}}}{{ - 2{\rm{sin}}2{\rm{t}}.{{\rm{e}}^{{\rm{cos}}2{\rm{t}}}}}}$
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = –esin2t – cos2t . cos2t.
(v)
Solution:
x =cos(log t)
Differentiating both sides w.r.t. ‘t’.
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}\left( {\log \left( {{\rm{cost}}} \right)} \right)}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}\left( {\log \left( {{\rm{cost}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{cost}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{cost}}} \right)}}{{{\rm{dt}}}}$
= – sin(log t) $\frac{1}{{\rm{t}}}$ = $ - \frac{1}{{\rm{t}}}$.sin(log t)
Again, y = log(cos t)
Differentiating both sides w.r.t. to ‘t’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}\left( {\log \left( {{\rm{cost}}} \right)} \right)}}{{{\rm{dt}}}}.\frac{{{\rm{d}}\left( {\log \left( {{\rm{cost}}} \right)} \right)}}{{{\rm{d}}\left( {{\rm{cost}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{cost}}} \right)}}{{{\rm{dt}}}}$ = $\frac{1}{{{\rm{cost}}}}.\left( { - {\rm{sint}}} \right)$ = – tant.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{\frac{{{\rm{dy}}}}{{{\rm{dt}}}}}}{{\frac{{{\rm{dx}}}}{{{\rm{dt}}}}}} = \frac{{ - {\rm{tant}}}}{{ - \frac{1}{{\rm{t}}}{\rm{sin}}\left( {{\rm{logt}}} \right)}}$ = $\frac{{{\rm{t}}.{\rm{tan}}.{\rm{t}}}}{{\sin \left( {{\rm{logt}}} \right)}}$.
(vi)
Solution:
x =log t + sin t
Differentiating both sides w.r.t. ‘t’.
Or, $\frac{{{\rm{dx}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}\left( {\log {\rm{t}} + {\rm{sint}}} \right)}}{{{\rm{dt}}}}$ = $\frac{1}{{\rm{t}}} + {\rm{cost}}$ = $\frac{{1 + {\rm{t}}.{\rm{cost}}}}{{\rm{t}}}$
Again, y = et + cos.t
Differentiating both sides w.r.t. to ‘t’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ = $\frac{{{\rm{d}}\left( {{{\rm{e}}^{\rm{t}}}{\rm{\: }} + {\rm{\: cos}}.{\rm{t}}} \right)}}{{{\rm{dt}}}}$ = et – sin.t
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{\frac{{{\rm{dy}}}}{{{\rm{dt}}}}}}{{\frac{{{\rm{dx}}}}{{{\rm{dt}}}}}} = \frac{{{{\rm{e}}^{\rm{t}}} - {\rm{sint}}}}{{\frac{{1 + {\rm{t}}.{\rm{cot}}.{\rm{t}}}}{{\rm{t}}}}}$ = $\frac{{{\rm{t}}\left( {{{\rm{e}}^{\rm{t}}} - {\rm{sint}}} \right)}}{{1 + {\rm{t}}.{\rm{cot}}.{\rm{t}}}}$