Exercise 19.2
Integrate the following:
1.(i) $\mathop \smallint \nolimits 3{{\rm{x}}^2}{\left( {{{\rm{x}}^3} + 1} \right)^3}$.dx
Solution:
Let I = $\mathop \smallint \nolimits 3{{\rm{x}}^2}{\left( {{{\rm{x}}^3} + 1} \right)^3}$.dx
Put x3 + 1 = y then 3x2.dx = dy
Or, I = $\mathop \smallint \nolimits {{\rm{y}}^3}$.dy = $\frac{{{{\rm{y}}^4}}}{4}$ + c = $\frac{1}{4}$ (x3 + 1)4 + c
(ii) = $\mathop \smallint \nolimits {\rm{x}}{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)^{\frac{3}{2}}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{x}}{\left( {{{\rm{a}}^2} + {{\rm{x}}^2}} \right)^{\frac{3}{2}}}$.dx
Put a2 + x2 = y then 2x.dx = dy
Or, x.dx = $\frac{1}{2}$.dy
Or, I = $\mathop \smallint \nolimits {{\rm{y}}^{\frac{3}{2}}}.\frac{1}{2}$.dy
= $\frac{1}{2}\mathop \smallint \nolimits {{\rm{y}}^{\frac{3}{2}}}$.dy = $\frac{1}{2}\frac{{{{\rm{y}}^{\frac{5}{2}}}}}{{\frac{5}{2}}}$ + c
= $\frac{1}{5}$y5/2 + c = $\frac{1}{5}$ (a2 + x2)5/2 + c.
(iii) $\mathop \smallint \nolimits \frac{{{\rm{xdy}}}}{{3{{\rm{x}}^2} - 4}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{\rm{xdy}}}}{{3{{\rm{x}}^2} - 4}}$.dx
Put 3x2 – 4 = y
Or,6x.dx = dy
Or, dx = $\frac{1}{6}$dy.
Or, I = $\mathop \smallint \nolimits \frac{{\frac{1}{6}.{\rm{dy}}}}{{\rm{y}}}$ = $\frac{1}{6}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = $\frac{1}{6}$logy + c = $\frac{1}{6}$log(3x2 – 4) + c.
(iv) $\mathop \smallint \nolimits \frac{{{{\rm{x}}^{{\rm{n}} - 1}}}}{{\sqrt {{{\rm{a}}^{\rm{n}}} + {{\rm{x}}^{\rm{n}}}} }}$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{{\rm{x}}^{{\rm{n}} - 1}}}}{{\sqrt {{{\rm{a}}^{\rm{n}}} + {{\rm{x}}^{\rm{n}}}} }}$.dx
Put an + xn = y ⇒ n.xn – 1.dx = dy ⇒ xn – 1.dx = $\frac{{{\rm{dy}}}}{{\rm{n}}}$.
Then,
Or, I = $\frac{1}{{\rm{n}}}\mathop \smallint \nolimits {{\rm{y}}^{ - \frac{1}{2}}}$.dy = $\frac{1}{{\rm{n}}}\frac{{{{\rm{y}}^{ - \frac{1}{2} + 1}}}}{{\frac{1}{2}}}{\rm{\: \: }}$+ c
= $\frac{2}{{\rm{n}}}$y1/2 + c
= $\frac{2}{{\rm{n}}}$$\sqrt {{{\rm{a}}^{\rm{n}}} + {{\rm{x}}^{\rm{n}}}} $ + c.
(v) $\mathop \smallint \nolimits \frac{{2{\rm{x}} + 3}}{{{{\left( {3{{\rm{x}}^2} + 9{\rm{x}} + 5} \right)}^3}}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{2{\rm{x}} + 3}}{{{{\left( {3{{\rm{x}}^2} + 9{\rm{x}} + 5} \right)}^3}}}$.dx
Put 3x2 + 9x + 5 = y
Or, (6x + 9).dx = dy
Or, 3(2x + 3).dx = dy
Or, (2x + 3).dx = $\frac{1}{3}$dy.
I = $\frac{1}{3}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{{{\rm{y}}^3}}}$ = $\frac{1}{3}\mathop \smallint \nolimits {{\rm{y}}^{ - 3}}$.dy = $\frac{1}{3}\frac{{{{\rm{y}}^{ - 3 + 1}}}}{{ - 2}}$ + c.
= $ - \frac{1}{6}$.$\frac{1}{{{{\rm{y}}^2}}}$ + c
= $ - \frac{1}{{6{{\left( {3{{\rm{x}}^2} + 9{\rm{x}} + 5} \right)}^2}}}$ + c.
(vi) $\mathop \smallint \nolimits \frac{{\left( {3{\rm{x}} + 2} \right).{\rm{dx}}}}{{{{\left( {3{{\rm{x}}^2} + 4{\rm{x}} + 1} \right)}^3}}}$
Solution:
Let I = $\mathop \smallint \nolimits \frac{{\left( {3{\rm{x}} + 2} \right).{\rm{dx}}}}{{{{\left( {3{{\rm{x}}^2} + 4{\rm{x}} + 1} \right)}^3}}}$
Put 3x2 + 4x + 1 = y
Or, (6x + 4).dx = dy
Or, 2(3x + 2).dx = dy
So, (3x + 2).dx = $\frac{1}{2}$.dy
I = $\mathop \smallint \nolimits \frac{{\left( {3{\rm{x}} + 2} \right).{\rm{dx}}}}{{{{\left( {3{{\rm{x}}^2} + 4{\rm{x}} + 1} \right)}^3}}}$ = $\frac{1}{2}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{{{\rm{y}}^3}}}$.dy = $\frac{1}{2}\mathop \smallint \nolimits {{\rm{y}}^{ - 3}}$.dy
= $\frac{1}{2}.\frac{{{{\rm{y}}^{ - 3 + 1}}}}{{ - 2}}$ + c
= $ - \frac{1}{{4{{\rm{y}}^2}}}$ + c
= $ - \frac{1}{{4{{\left( {3{{\rm{x}}^2} + 4{\rm{x}} + 1} \right)}^2}}}$ + c.
(vii) $\mathop \smallint \nolimits 3{\rm{x}}\left( {{\rm{x}} + 2} \right){\left( {{{\rm{x}}^3} + 3{{\rm{x}}^2} + 1} \right)^2}$dx
Solution:
Let I = $\mathop \smallint \nolimits 3{\rm{x}}\left( {{\rm{x}} + 2} \right){\left( {{{\rm{x}}^3} + 3{{\rm{x}}^2} + 1} \right)^2}$dx
Put x3 + 3x2 + 1 = y.
Or, (3x2 + 6x).dx = dy
Or, 3x(x + 2)dx = dy.
I = $\mathop \smallint \nolimits {{\rm{y}}^2}.{\rm{dy}}$ = $\frac{{{{\rm{y}}^3}}}{3}$ + c = $\frac{1}{3}$(x3 + 3x2 + 1)3 + c.
(viii) $\mathop \smallint \nolimits \frac{{{\rm{x}} + 2}}{{\sqrt {{{\rm{x}}^2} + 4{\rm{x}} + 3} }}$ dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{\rm{x}} + 2}}{{\sqrt {{{\rm{x}}^2} + 4{\rm{x}} + 3} }}$ dx
Put x3 + 4x + 3 = y.
Or, (2x + 4).dx = y
Or, 2(x + 2)dx = dy.
Or, (x + 2).dx = $\frac{1}{2}$dy
I = $\frac{1}{2}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\sqrt {\rm{y}} }}$ = $\frac{1}{2}\mathop \smallint \nolimits {{\rm{y}}^{ - \frac{1}{2}}}.{\rm{dy}}$ = $\frac{1}{2}.\frac{{{{\rm{y}}^{ - \frac{1}{2} + 1}}}}{{\frac{1}{2}}}$ + c.
= ${{\rm{y}}^{\frac{1}{2}}}$ + c = $\sqrt {{{\rm{x}}^2} + 4{\rm{x}} + 3} $ + c.
(ix) $\mathop \smallint \nolimits \frac{{\left( {{{\rm{x}}^2} + 1} \right).{\rm{dx}}}}{{\sqrt {{{\rm{x}}^3} + 3{\rm{x}} + 3} }}$ dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{\left( {{{\rm{x}}^2} + 1} \right).{\rm{dx}}}}{{\sqrt {{{\rm{x}}^3} + 3{\rm{x}} + 3} }}$ dx
= $\mathop \smallint \nolimits \frac{{\left( {{{\rm{x}}^2} + 1} \right).{\rm{dx}}}}{{{{\left( {{{\rm{x}}^3} + 3{\rm{x}} + 4} \right)}^{\frac{1}{2}}}.}}$dx
Put x3 + 3x + 4 = y.
Or, (3.x2 + 3).dx = dy
Or, 3(x2 + 1)dx = dy.
Or, (x2 + 1).dx = $\frac{1}{3}$dy.
I = $\frac{1}{3}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\sqrt {\rm{y}} }}$ = $\frac{1}{3}\mathop \smallint \nolimits {{\rm{y}}^{ - \frac{1}{2}}}.{\rm{dy}}$ = $\frac{1}{3}.\frac{{{{\rm{y}}^{ - \frac{1}{2} + 1}}}}{{\frac{1}{2}}}$ + c.
= $\frac{2}{3}$.y1/2 + c = $\frac{2}{3}\sqrt {{{\rm{x}}^3} + 3{\rm{x}} + 4} $ + c.
2(i) $\mathop \smallint \nolimits {\rm{x}}.{\rm{sin}}\left( {{\rm{a}}{{\rm{x}}^2} + {\rm{b}}} \right)$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{x}}.{\rm{sin}}\left( {{\rm{a}}{{\rm{x}}^2} + {\rm{b}}} \right)$.dx
Put ax2 + b = y
Or, 2ax.dx = y
So, x.dx = $\frac{1}{{2{\rm{a}}}}$dy
So, I = $\mathop \smallint \nolimits \frac{1}{{2{\rm{a}}}}.{\rm{siny}}.{\rm{dy}}$ = $\frac{1}{{2{\rm{a}}}}\mathop \smallint \nolimits {\rm{siny}}.$dy
= $\frac{1}{{2{\rm{a}}}}$(–cosy) + c = $ - \frac{1}{{2{\rm{a}}}}$cos(ax2 + b) + c.
(ii) $\mathop \smallint \nolimits {{\rm{x}}^2}.{\rm{cos}}\left( {{{\rm{x}}^3} + 1} \right)$.dx
Solution:
Let I = $\mathop \smallint \nolimits {{\rm{x}}^2}.{\rm{cos}}\left( {{{\rm{x}}^3} + 1} \right)$.dx
Put, x3 + 1 = y
Or, 3x2.dx = dy
So, x3.dx = $\frac{1}{3}$dy
So, I = $\mathop \smallint \nolimits {\rm{cosy}}\frac{1}{3}$.dy $\frac{1}{3}$siny + c = $\frac{1}{3}$sin(x3 + 1) + c.
(iii) $\mathop \smallint \nolimits \frac{1}{{\rm{x}}}{\rm{sin}}\left( {{\rm{logx}}} \right)$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{1}{{\rm{x}}}{\rm{sin}}\left( {{\rm{logx}}} \right)$.dx
Put, logx = y
Or, $\frac{1}{{\rm{x}}}$.dx = dy
So, I = $\mathop \smallint \nolimits {\rm{siny}}$.dy
= – cosy + c = –cos(logx) + c.
(iv) $\mathop \smallint \nolimits {\sin ^3}{\rm{x}}.{\rm{cosx}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\sin ^3}{\rm{x}}.{\rm{cosx}}$.dx
Put, sinx = y
Or, cos xdx = dy.
So, I = $\mathop \smallint \nolimits {\rm{siny}}$.dy
= – cosy + c = –cos(logx) + c.
(v) $\mathop \smallint \nolimits {\sin ^2}{\rm{x}}.{\cos ^3}{\rm{x}}.$dx
Solution:
Let I = $\mathop \smallint \nolimits {\sin ^2}{\rm{x}}.{\cos ^3}{\rm{x}}.$dx
= $\mathop \smallint \nolimits {\sin ^2}{\rm{x}}.{\cos ^2}{\rm{x}}.{\rm{cosx}}.$dx = $\mathop \smallint \nolimits {\sin ^2}{\rm{x}}.\left( {1 - {{\sin }^2}{\rm{x}}} \right).{\rm{cosx}}$.dx
= $\mathop \smallint \nolimits ({\sin ^2}{\rm{x}} - {\sin ^4}{\rm{x}}).{\rm{cosx}}$.dx
Put, sinx = y
Or, cos xdx = dy.
So, I = $\mathop \smallint \nolimits \left( {{{\rm{y}}^2} - {{\rm{y}}^4}} \right)$dy = $\frac{{{{\rm{y}}^3}}}{3} - \frac{{{{\rm{y}}^5}}}{5}$ + c = $\frac{1}{3}$sin3x – $\frac{1}{5}$ sin5x + c
(vi) $\mathop \smallint \nolimits {\cos ^5}{\rm{x}}.{\sin ^3}{\rm{x}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\cos ^5}{\rm{x}}.{\sin ^3}{\rm{x}}$.dx
= $\mathop \smallint \nolimits {\cos ^5}{\rm{x}}.{\sin ^3}{\rm{x}}$dx = $\mathop \smallint \nolimits {\cos ^5}{\rm{x}}.{\sin ^2}{\rm{x}}.{\rm{sinx}}$.dx
= $\mathop \smallint \nolimits {\cos ^2}{\rm{x}}\left( {1 - {{\cos }^2}{\rm{x}}} \right).{\rm{sinx}}$.dx
= $\mathop \smallint \nolimits ({\cos ^2}{\rm{x}} - {\cos ^7}{\rm{x}}).{\rm{sinx}}$.dx
Put, cosx = y
Or, –sinx.dx = dy
So, sinx.dx = –dy
So, I = $\mathop \smallint \nolimits \left( {{{\rm{y}}^5} - {{\rm{y}}^2}} \right)( - $dy) = $ - \frac{{{{\rm{y}}^6}}}{6} + \frac{{{{\rm{y}}^8}}}{8}$ + c
= $\frac{1}{8}$y8 – $\frac{1}{6}$y6 + c = $\frac{1}{8}$cos8x – $\frac{1}{6}$cos6x + c.
(vii) $\mathop \smallint \nolimits {\left( {{\rm{asinx}} - {\rm{b}}} \right)^3}$.cosx.dx
Solution:
Let I = $\mathop \smallint \nolimits {\left( {{\rm{asinx}} - {\rm{b}}} \right)^3}$.cosx.dx
Put a sinx – b = y
Or, a.cosx.dx = dy
Or, cosx.dx = $\frac{1}{{\rm{a}}}$.dy
So, I = $\mathop \smallint \nolimits {{\rm{y}}^3}.\frac{1}{{\rm{a}}}$.dy = $\frac{1}{{\rm{a}}}\mathop \smallint \nolimits {{\rm{y}}^3}$.dy
= $\frac{1}{{\rm{a}}}$.$\frac{{{{\rm{y}}^4}}}{4}$ + c = $\frac{1}{{4{\rm{a}}}}$ (asinx – b)4 + c
(viii) $\mathop \smallint \nolimits \frac{{{\rm{sinx}}}}{{{{\left( {1 - {\rm{cosx}}} \right)}^{\rm{m}}}}}$.dx
Solution:
I = $\mathop \smallint \nolimits \frac{{{\rm{sinx}}}}{{{{\left( {1 - {\rm{cosx}}} \right)}^{\rm{m}}}}}$.dx
Put 1 – cosx = y
Or, – (–sinx).dx = dy
So, sinx.dx = dy.
So, I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{{{\rm{y}}^{\rm{m}}}}}$ = $\mathop \smallint \nolimits {{\rm{y}}^{ - {\rm{m}}}}$.dy = $\frac{{{{\rm{y}}^{{\rm{m}} + 1}}}}{{ - {\rm{m}} + 1}}$ + c = $\frac{{{{\rm{y}}^{1 - {\rm{m}}}}}}{{1 - {\rm{m}}}}$ + c = $\frac{{{{\left( {1 - {\rm{cosx}}} \right)}^{1 - {\rm{m}}}}}}{{1 - {\rm{m}}}}$ + c.
(ix) $\mathop \smallint \nolimits {\rm{cotx}}{\left( {{\rm{logsinx}}} \right)^3}$.dx
Solution:
I = $\mathop \smallint \nolimits {\rm{cotx}}{\left( {{\rm{logsinx}}} \right)^3}$.dx
Put, log.sinx = y
Or, $\frac{1}{{{\rm{sinx}}}}$.cosx.dx = dy
So, cotx.dx = dy
So, I = $\mathop \smallint \nolimits {{\rm{y}}^3}$.dy = $\frac{{{{\rm{y}}^4}}}{4}$ + c = $\frac{1}{4}$(log.sinx)4 + c.
(x) $\mathop \smallint \nolimits {\tan ^2}\theta .{\sec ^4}\theta $.dθ = $\mathop \smallint \nolimits {\tan ^2}\theta .{\sec ^2}\theta .{\sec ^2}\theta $.dθ
Solution:
I = $\mathop \smallint \nolimits {\tan ^2}\theta .{\sec ^4}\theta $.dθ = $\mathop \smallint \nolimits {\tan ^2}\theta .{\sec ^2}\theta .{\sec ^2}\theta $.dθ
= $\mathop \smallint \nolimits {\tan ^2}\theta \left( {1 + {{\tan }^2}\theta } \right){\sec ^2}\theta $.dθ
Put, tanθ= y
Or, sec2θ.dθ = dy.
I = $\mathop \smallint \nolimits {{\rm{y}}^2}\left( {1 + {{\rm{y}}^2}} \right)$.dy = $\mathop \smallint \nolimits \left( {{{\rm{y}}^2} + {{\rm{y}}^4}} \right).{\rm{dy}}$
= $\frac{1}{3}$y3 + $\frac{1}{5}$y5 + c = $\frac{1}{3}$tan3θ + $\frac{1}{5}$tan5θ + c.
(xi) $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^4}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}}.{\sec ^2}{\rm{x}}$.dx
Solution:
I = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^4}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}}.{\sec ^2}{\rm{x}}$.dx
= $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}\left( {1 + {{\tan }^2}{\rm{x}}} \right){\sec ^2}{\rm{x}}$.dx
Put, tanx= y
Or, sec2x.dx = dy.
I = $\mathop \smallint \nolimits {{\rm{y}}^3}\left( {1 + {{\rm{y}}^2}} \right)$.dy = $\mathop \smallint \nolimits \left( {{{\rm{y}}^3} + {{\rm{y}}^5}} \right).{\rm{dy}}$
= $\frac{{{{\rm{y}}^4}}}{4} + \frac{{{{\rm{y}}^6}}}{6} + {\rm{c}}$. = $\frac{1}{4}$tan4x + $\frac{1}{6}$tan6x + c.
(xii) $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^{\frac{3}{2}}}{\rm{x}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\sec ^{\frac{3}{2}}}{\rm{x}}$.dx
= $\mathop \smallint \nolimits {\tan ^2}{\rm{x}}.{\rm{tanx}}.{\sec ^{\frac{1}{2}}}{\rm{x}}.{\rm{secx}}$.dx
= $\mathop \smallint \nolimits ({\sec ^2}{\rm{x}} - 1).{\sec ^{\frac{1}{2}}}{\rm{x}}.{\rm{tanx}}.{\rm{secx}}$.dx
Put secx = y
Or, sec.x.tan.x.dx = dy
I = $\mathop \smallint \nolimits \left( {{{\rm{y}}^2} - 1} \right){{\rm{y}}^{\frac{1}{2}}}$.dy = $\mathop \smallint \nolimits \left( {{{\rm{y}}^{\frac{5}{2}}} - {{\rm{y}}^{\frac{1}{2}}}} \right)$.dy
= $\frac{{{{\rm{y}}^{\frac{7}{2}}}}}{{\frac{7}{2}}} - \frac{{{{\rm{y}}^{\frac{3}{2}}}}}{{\frac{3}{2}}}$ + c = $\frac{2}{7}$y7/2 – $\frac{2}{3}$y3/2 + c
= $\frac{2}{7}$sec7/2 x – $\frac{2}{3}$sec3/2x + c.
(xiii) $\mathop \smallint \nolimits {\cot ^{\frac{3}{2}}}{\rm{x}}.{\rm{cose}}{{\rm{c}}^4}{\rm{x}}.{\rm{dx}}$
Solution:
Let I = $\mathop \smallint \nolimits {\cot ^{\frac{3}{2}}}{\rm{x}}.{\rm{cose}}{{\rm{c}}^4}{\rm{x}}.{\rm{dx}}$
= $\mathop \smallint \nolimits {\cot ^{\frac{3}{2}}}{\rm{x}}.{\rm{cose}}{{\rm{c}}^2}{\rm{x}}.{\rm{cose}}{{\rm{c}}^2}{\rm{x}}$.dx
= $\mathop \smallint \nolimits {\cot ^{\frac{3}{2}}}{\rm{x}}\left( {1 + {{\cot }^2}{\rm{x}}} \right).{\rm{cose}}{{\rm{c}}^2}{\rm{x}}$.dx
Put cot x = y
Or, – cosec2xdx = dx
Or, cosec2x.dx = –dy
I = $ - \mathop \smallint \nolimits {{\rm{y}}^{\frac{3}{2}}}\left( {1 + {{\rm{y}}^2}} \right)$.dy = $ - \mathop \smallint \nolimits \left( {{{\rm{y}}^{\frac{3}{2}}} + {{\rm{y}}^{\frac{7}{2}}}} \right)$.dy
= $ - \frac{{{{\rm{y}}^{\frac{5}{2}}}}}{{\frac{5}{2}}} - \frac{{{{\rm{y}}^{\frac{9}{2}}}}}{{\frac{9}{2}}}$ + c
= $ - \frac{2}{5}$cot5/2x – $\frac{2}{9}$.cot9/2x + c.
(xiv) $\mathop \smallint \nolimits \frac{{{\rm{sinax}} + {\rm{cosax}}}}{{{\rm{sinax}} - {\rm{cosax}}}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{\rm{sinax}} + {\rm{cosax}}}}{{{\rm{sinax}} - {\rm{cosax}}}}$.dx
Put sinax – cosax = y
Or, {a.cosax – a.(–sinax)}dx = dy
Or, a(cosax + sinax)dx = dy
So, (cos ax + sin ax).dx = $\frac{1}{{\rm{a}}}$dy.
I = $\frac{1}{{\rm{a}}}\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = $\frac{1}{{\rm{a}}}$logy + c = $\frac{1}{{\rm{a}}}$log(sinax – cosax) + c.
(xv) $\mathop \smallint \nolimits {\rm{cotx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{cotx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$.dx
Put sinx = y ⇒ cosx.dx = dy
I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = log y + c = log(sinx) + c.
(xvi) $\mathop \smallint \nolimits {\rm{tanx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{secx}}.{\rm{tanx}}}}{{{\rm{secx}}}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{tanx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{secx}}.{\rm{tanx}}}}{{{\rm{secx}}}}$.dx
Put sec.x = y ⇒ sec.x.tan.x.dx = dy
I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = log y + c = log(secx) + c.
(xvii) $\mathop \smallint \nolimits {\rm{secx}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{secx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{secx}}.\left( {{\rm{secx}} + {\rm{tanx}}} \right)}}{{{\rm{secx}} + {\rm{tanx}}}}$.dx
Put sec.x + tan.x = y
Or, (secx.tanx + sec2x).dx = dy
Or, secx(tanx + secx).dx = dy
I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = log y + c = log(secx + tanx) + c.
(xviii) $\mathop \smallint \nolimits {\rm{cosecx}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\rm{cosecx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{cosecx}}.\left( {{\rm{cosecx}} - {\rm{cotx}}} \right)}}{{{\rm{cosecx}} - {\rm{cotx}}}}$.dx
Put, cosecx – cotx = y
Or, {–cosec x.cot.x – (–cosec2x)}.dx = dy
Or, cosecx(cosec.x – cot.x).dx = dy
I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{\rm{y}}}$ = log y + c = log(cosecx– cotx) + c.
(xix) $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\rm{tanx}}.{\tan ^2}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\rm{tanx}}({\sec ^2}{\rm{x}} - 1)$.dx
= $\mathop \smallint \nolimits ({\rm{tanx}}.{\sec ^2}{\rm{x}} - {\rm{tanx}})$.dx = $\mathop \smallint \nolimits {\rm{tanx}}.{\sec ^2}{\rm{dx}}$ – $\mathop \smallint \nolimits {\rm{tanx}}$.dx
= I1 – I2….(i)
I1 = $\mathop \smallint \nolimits {\rm{tanx}}.{\sec ^2}{\rm{dx}}$
Put, tanx = y, sec2x.dx = dy.
Or, I1 = $\mathop \smallint \nolimits {\rm{y}}$.dy = $\frac{1}{2}$y2 + c1 = $\frac{1}{2}$tan2x + c1
Or, I2 = $\mathop \smallint \nolimits {\rm{tanx}}.$dx = $\mathop \smallint \nolimits \frac{{{\rm{sinx}}}}{{{\rm{cosx}}}}$.dx
Put cosx = z
Or, –sinx.dx = dz
Or, sinx.dx = –dz
I2 = $\mathop \smallint \nolimits - \frac{{{\rm{dz}}}}{{\rm{z}}}$ = – logz + c2 = – log(cosx) + c2
From (i), I = I1 – I2.
= $\frac{1}{2}$tan2x + c1 – {–log(cosx) + c2}
= $\frac{1}{2}$tan2x + log.cosx + c1 + c2.
= $\frac{1}{2}$tan2x + log.cosx + c, where c = c1 – c2.
(xx) $\mathop \smallint \nolimits {\cot ^3}{\rm{x}}$.dx
Solution:
Let I = $\mathop \smallint \nolimits {\cot ^3}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\rm{cotx}}.{\cot ^2}{\rm{x}}$.dx = $\mathop \smallint \nolimits {\rm{cotx}}({\rm{cose}}{{\rm{c}}^2}{\rm{x}} - 1)$.dx
= $\mathop \smallint \nolimits ({\rm{cotx}}.{\rm{cose}}{{\rm{c}}^2}{\rm{x}} - {\rm{cotx}})$.dx = $\mathop \smallint \nolimits {\rm{cotx}}.{\rm{cose}}{{\rm{c}}^2}{\rm{dx}}$ – $\mathop \smallint \nolimits {\rm{cotx}}$.dx
I1 = $\mathop \smallint \nolimits {\rm{cotx}}.{\rm{cose}}{{\rm{c}}^2}{\rm{dx\: }}$
= I1 – I2….(i)
I1 = $ - \mathop \smallint \nolimits {\rm{y}}$.dy = $ - \frac{1}{2}$y2 + c1 = $ - \frac{1}{2}$cot2x + c1.
I2 = $\mathop \smallint \nolimits {\rm{cotx}}.$dx = $\mathop \smallint \nolimits \frac{{{\rm{cosx}}}}{{{\rm{sinx}}}}$.dx
Put, sinx = z
Or, cosx.dx = dz
Or, I2 = $\mathop \smallint \nolimits \frac{{{\rm{dz}}}}{{\rm{z}}}$ = logz + c2 = log(sin x) + c2.
From (i), I = I1– I2
= $ - \frac{1}{2}$cot2x + c1 – {log(sinx) + c2}
= $ - \frac{1}{2}$cot2x – log(sinx) + c1 + c2.
= $ - \frac{1}{2}$ cot2x – log(sinx) + c, c = c1 – c2.
(xxi) $\mathop \smallint \nolimits {\sec ^4}{\rm{x}}.{\rm{dx}}$
Solution:
Let I = $\mathop \smallint \nolimits {\sec ^4}{\rm{x}}.{\rm{dx}}$ = $\mathop \smallint \nolimits {\sec ^2}{\rm{x}}.{\sec ^2}{\rm{x}}$.dx
= $\mathop \smallint \nolimits (1 + {\tan ^2}{\rm{x}}){\sec ^2}{\rm{x}}$.dx
Put tanx = y
Or, sec2x.dx = dy
I = $\mathop \smallint \nolimits \left( {1 + {{\rm{y}}^2}} \right)$.dy = y + $\frac{1}{3}$y3 + c = tanx + $\frac{1}{3}$tan3x + c.
(xxii) $\mathop \smallint \nolimits {\tan ^4}{\rm{x}}.{\rm{dx}}$
Solution:
Let I = $\mathop \smallint \nolimits {\tan ^4}{\rm{x}}.{\rm{dx}}$ = $\mathop \smallint \nolimits {\tan ^2}{\rm{x}}.{\tan ^2}{\rm{x}}$.dx
= $\mathop \smallint \nolimits ({\sec ^2}{\rm{x}} - 1){\tan ^2}{\rm{x}}$.dx = $\mathop \smallint \nolimits ({\sec ^2}{\rm{x}}.{\tan ^2}{\rm{x}} - {\tan ^2}{\rm{x}})$.dx
= $\mathop \smallint \nolimits \{ {\sec ^2}{\rm{x}}.{\tan ^2}{\rm{x}} - ({\sec ^2}{\rm{x}} - 1)\} $.dx
= $\mathop \smallint \nolimits \{ {\sec ^2}{\rm{x}}.{\tan ^2}{\rm{x}} - {\sec ^2}{\rm{x}} + 1\} $.dx
= $\mathop \smallint \nolimits ({\tan ^2}{\rm{x}} - 1){\sec ^2}{\rm{x}}$.dx + $\mathop \smallint \nolimits 1$.dx
Put tanx = y
Or, sec2x.dx = dy
I = $\mathop \smallint \nolimits \left( {{{\rm{y}}^2} + 1} \right)$.dy + $\mathop \smallint \nolimits 1.{\rm{dx}}$
= $\frac{1}{3}$y3 – y + x + c.
= $\frac{1}{3}$tan3x – tanx + x + c.
(xxiii) $\mathop \smallint \nolimits {\tan ^5}{\rm{x}}.{\rm{dx}}$
Solution:
Let I = $\mathop \smallint \nolimits {\tan ^5}{\rm{x}}.{\rm{dx}}$ = $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}.{\tan ^2}{\rm{x}}$.dx
= $\mathop \smallint \nolimits {\tan ^3}{\rm{x}}({\sec ^2}{\rm{x}} - 1)$.dx = $\mathop \smallint \nolimits ({\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}} - {\tan ^3}{\rm{x}})$.dx
= $\mathop \smallint \nolimits ({\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}} - {\rm{tanx}}.{\tan ^2}{\rm{x}})$.dx
= $\mathop \smallint \nolimits \{ {\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}} - {\rm{tanx}}\left( {{{\sec }^2}{\rm{x}} - 1} \right)\} $.dx
= $\mathop \smallint \nolimits \{ ({\tan ^3}{\rm{x}}.{\sec ^2}{\rm{x}} - {\rm{tanx}}.{\sec ^2}{\rm{x}} + {\rm{tanx}})$.dx
= $\mathop \smallint \nolimits \{ ({\tan ^3}{\rm{x}} - {\rm{tanx}}).{\sec ^2}{\rm{x}} + {\rm{tanx}}\} .$dx
= $\mathop \smallint \nolimits ({\tan ^3}{\rm{x}} - {\rm{tanx}}){\sec ^2}{\rm{x}}$.dx + $\mathop \smallint \nolimits {\rm{tanx}}$.dx
= I1 – I2 ….(i)
I1 = $\mathop \smallint \nolimits \left( {{{\rm{y}}^3} - {\rm{y}}} \right)$.dy = $\frac{1}{4}$.y4 – $\frac{1}{2}$y2 + c1 = $\frac{1}{4}$tan4x – $\frac{1}{2}$tan2x + c1
I2 = $\mathop \smallint \nolimits {\rm{tanx}}$.dx = $\mathop \smallint \nolimits \frac{{{\rm{tanx}}.{\rm{secx}}}}{{{\rm{secx}}}}$.dx
Put sec x = z, secx.tanx.dx = dz
I2 = $\mathop \smallint \nolimits \frac{{{\rm{dz}}}}{{\rm{z}}}$ = logz + c2 = log(secx) + c2
From(i), I = I1 + I2
= $\frac{1}{4}$tan4x – $\frac{1}{2}$tan2x + c1 + {log(secx) + c2}
= $\frac{1}{4}$tan4x – $\frac{1}{2}$tan2x + log(secx) + c1 + c2
= $\frac{1}{4}$tan4x – $\frac{1}{2}$ tan2x + log(secx) + c, c1 + c2.
(xxiv) $\mathop \smallint \nolimits ({\tan ^2}{\rm{x}} + {\tan ^4}{\rm{x}})$.dx
Solution:
Let I = $\mathop \smallint \nolimits ({\tan ^2}{\rm{x}} + {\tan ^4}{\rm{x}})$.dx = $\mathop \smallint \nolimits {\tan ^2}{\rm{x}}$(1 + tan2x).dx
= $\mathop \smallint \nolimits ({\tan ^2}{\rm{x}}.{\sec ^2}{\rm{x}}.{\rm{dx}}$
Put tanx = y
Or, sec2x.dx = dy
Put tanx = y
Or, I = $\mathop \smallint \nolimits {{\rm{y}}^2}$.dy = $\frac{1}{3}$y3 + c = $\frac{1}{3}$ tan3x + c.
(xxv) $\mathop \smallint \nolimits {{\rm{e}}^{{\rm{sinx}}.{\rm{cosx}}}}$.cos2x.dx
Solution:
Let I = $\mathop \smallint \nolimits {{\rm{e}}^{{\rm{sinx}}.{\rm{cosx}}}}$.cos2x.dx
Put sinx.cosx = y.
Or, $\frac{1}{2}$.2sinx.cosx = y
Or, $\frac{1}{2}$sin2x = y
Or, $\frac{1}{2}$cos2x.2dx = dy
Or, cos2x.dx = dy
I = $\mathop \smallint \nolimits {{\rm{e}}^{\rm{y}}}$.dy = ey + c = esinx.cosx + c.
(xxvi) $\mathop \smallint \nolimits {{\rm{e}}^{{{\sin }^2}{\rm{x}}}}$.sin2x.dx
Solution:
Let I = $\mathop \smallint \nolimits {{\rm{e}}^{{{\sin }^2}{\rm{x}}}}$.sin2x.dx
Put sin2x = y or, 2sinx.cosx.dy = dy
Or, sin2x.dx = dy
I = $\mathop \smallint \nolimits {{\rm{e}}^{\rm{y}}}$.dy = ey + c = esin2x + c.
(xxvii) $\mathop \smallint \nolimits \left( {1 - \frac{1}{{{{\rm{x}}^2}}}} \right)$.ex + 1/x.dx
Solution:
Let I = $\mathop \smallint \nolimits \left( {1 - \frac{1}{{{{\rm{x}}^2}}}} \right)$.ex + 1/x.dx
Put x + $\frac{1}{{\rm{x}}}$ = y.
Or, $\left( {1 - \frac{1}{{{{\rm{x}}^2}}}} \right)$.dx = dy
I = $\mathop \smallint \nolimits {{\rm{e}}^{\rm{y}}}$.dy = ey + c = ex + 1/x + c.
(xxviii) $\mathop \smallint \nolimits \frac{{{\rm{sin}}\sqrt {\rm{x}} }}{{\sqrt {\rm{x}} }}$.dx
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{\rm{sin}}\sqrt {\rm{x}} }}{{\sqrt {\rm{x}} }}$.dx
Put, $\sqrt {\rm{x}} $ = y
Or, $\frac{1}{{2\sqrt {\rm{x}} }}$.dx = dy
Or, $\frac{1}{{\sqrt {\rm{x}} }}$.dx = 2dy.
I = $\mathop \smallint \nolimits {\rm{siny}}.2{\rm{dy}}$ = 2$\mathop \smallint \nolimits {\rm{siny}}$.dy
= 2(–cosy) + c = – 2cos$\sqrt {\rm{x}} $ + c.
(xxix) $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{2{\rm{x}}}}}}{{1 + {{\rm{e}}^{\rm{x}}}}}$.dx
Solution:
Or, Let I = $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{2{\rm{x}}}}}}{{1 + {{\rm{e}}^{\rm{x}}}}}$.dx = $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{\rm{x}}}.{{\rm{e}}^{\rm{x}}}}}{{1 + {{\rm{e}}^{\rm{x}}}}}$.dx
Put ex = y
Or, ex.dx = dy
I = $\mathop \smallint \nolimits \frac{{{\rm{ydy}}}}{{1 + {\rm{y}}}}$ = $\mathop \smallint \nolimits \frac{{\left\{ {\left( {1 + {\rm{y}}} \right) - 1} \right\}}}{{1 + {\rm{y}}}}$.dy
= $\mathop \smallint \nolimits \left( {1 - \frac{1}{{1 + {\rm{y}}}}} \right)$.dy = y – log (1 + y) + c = ex – log(1 + ex) + c.
(xxx) $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{\rm{x}}} - 1}}{{{{\rm{e}}^{\rm{x}}} + 1}}$.dx
Solution:
Or, Let I = $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{\rm{x}}} - 1}}{{{{\rm{e}}^{\rm{x}}} + 1}}$.dx = $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{ - \frac{{\rm{x}}}{2}}}\left( {{{\rm{e}}^{\rm{x}}} - 1} \right)}}{{{{\rm{e}}^{ - \frac{{\rm{x}}}{2}}}\left( {{{\rm{e}}^{\rm{x}}} + 1} \right)}}$.dx
= $\mathop \smallint \nolimits \frac{{{{\rm{e}}^{\frac{{\rm{x}}}{2}}} - {{\rm{e}}^{ - \frac{{\rm{x}}}{2}}}}}{{{{\rm{e}}^{\frac{{\rm{x}}}{2}}} + {{\rm{e}}^{ - \frac{{\rm{x}}}{2}}}}}$
Put ex/2 + e–x/2 = y.
Or, $\left\{ {{{\rm{e}}^{\frac{{\rm{x}}}{2}}}.\frac{1}{2} + {{\rm{e}}^{ - \frac{{\rm{x}}}{2}}}\left( { - \frac{1}{2}} \right)} \right\}$.dx = dy
Or, $\frac{1}{2}$ (ex/2 – e–x/2).dx = dy
Or, (ex/2 – e–x/2).dx = 2.dy
I = $\mathop \smallint \nolimits \frac{{2.{\rm{dy}}}}{{\rm{y}}}$ = 2.logy + c = 2log(ex/2 + e–x/2) + c.
(xxxi) $\mathop \smallint \nolimits \frac{{{\rm{x}}{{\rm{e}}^{\rm{x}}}.{\rm{dx}}}}{{{{\cos }^2}({\rm{x}}{{\rm{e}}^{\rm{x}}} - {{\rm{e}}^{\rm{x}}}}}$
Solution:
Let I = $\mathop \smallint \nolimits \frac{{{\rm{x}}{{\rm{e}}^{\rm{x}}}.{\rm{dx}}}}{{{{\cos }^2}({\rm{x}}{{\rm{e}}^{\rm{x}}} - {{\rm{e}}^{\rm{x}}}}}$
Put x.ex – ex = y.
Or, {x.ex + ex.1 – ex}dx = dy
Or, x.ex.dx = dy.
I = $\mathop \smallint \nolimits \frac{{{\rm{dy}}}}{{{{\cos }^2}{\rm{y}}}}$ = $\mathop \smallint \nolimits {\sec ^2}{\rm{y}}.{\rm{dy}}$ = tany + c = tan(xex – ex) + c