NEB Class 11 Mathematics Model Set 2 | NepaliEducate

Class 11 Maths Model Question


Time: 3:00 Hrs

Class : 11

Subject: Mathematics (4011)    

F.M:- 75

 P.M:- 30 


Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicates full marks.

Attempt all questions.

Group-A                                                                (11x1=11)  Rewrite the correct Option in your answer sheet:

1.      A compound statement which is always true is called 

a)      Converse  b) Contradiction           c) Conditional d) Tautology

2.      If x, y, z are in G.P. then logx, logy, logz are in

a)      A.P.                       b) G.P.             c) H.P.             d) None of above

3.      In a triangle ABC B= 1200 , a=1, c=1 then other angles and sides are

a)      35, 45, 2    b) 10, 50 , 3     c) 20, 40, 2      d) 30, 30, 3

4.      For what value of m are the two vectors  = -2 +4  and   = 2+ 7 + m orthogonal?

a)      3    b) -     c) 2                  d) None of these

5.      The equation of parabola with the vertex at origin and directrix  y+a = 0 is 

a)      y2= 4ax      b) x2= 4ay       c) (y-k)2=4a(x-h)                     d) (x-h)2= 4a(y-k)

6.      
What is the probability that a leap year selected at random contained 53 Sundays? 

a)1/7               b) 2/7                  c) 1                  d) 1/53 

7.       is equal to

a)      0    b) 1                  c) infinity                 d) can’t be said

8.      xsinx + cosx is _______ function.

a)      Even          b) Odd             c) neither even nor odd                       d) none of above 

9.      A particle moves in a straight line so that its distance in meters from a given point in the line after t seconds is given by  s = 3+ 5t +t3. What is the average velocity during the 5th second.

a)      65              b) 66    c) 67    d) none of the above 

10.  How many negative roots does the function 2x3-5x+2=0 have,

a)      2    b) 1                  c) 0                  d) 3

11.  If supply: P=Q2+40 and demand P= 240-Q2 what is the market equilibrium price?

a)      140            b) 130              c) 135              d) 145

                                                                                                         Group-B                       (8x5=40)                                         

 

12.  Define domain and range of the function. Find the domain and range of         f(x)= 

13.  Prove that A.M., G.M. and H.M. between unequal positive number satisfy the following  a) A.M.x H.M.=G.M2

b) A.M>G.M>H.M

14.  a) In any Triangle ABC, if a4+b4+c4=2c2(a2+b2), Prove that C= 450 or 1350.                     [3] b) Express =(4,7) as the linear combination at = (5, -4 ) and = (-2, 5)                                 [2]

 

15.  Calculate the coefficient of variation from the following data:    

Class 0-10 10-20 20-30 30-40 40-50
FREQUENCY 8 13 16 8 5

16.  Determine whether the function f(x)= 2x3-3x2-36x+49 is increasing or decreasing at x=5 and x=-3. Also obtain the Critical point and point of inflection.

17.  Evaluate 

18.  Evaluate, using composite trapezoidal rule the integral,   n=3

Also find the error of approximation from its actual value.

19.  The demand and supply function for goods are given by Pd: 120- 2Qd and Ps= 30+ Qs

i)           Calculate the equilibrium price and quantity.                                                                [3]   

ii)     Calculate the excess of supply(Qs-Qd)                                                                                [1] 

.iii)   Calculate the excess of demand (Qd-Qs) when p=42                                                          [1]                           

 

                                    Group-C                                         (3x8=24)

 

20.  a) Prove that   4a^2 b^2 c^2                       [4] 

      b)  If (x+iy)(3+2i)= 1+i , show that                                                    [2]

c)      Test the periodicity and find the period of f(x)=sinbx                                                         [2]

21.  a)  Write the general equation of circle.                                                                                    [1] 

      b)  Write the equation of tangent to the circle x2+y2=a2 at a point (x1,y1)   c         [1]

c)      Find the equation of the tangent of the circle x2+y2+6x+4y-12 =0. Which is parallel to the line 4x+3y+12=0.                                                                                                                [4]

d)      Does the normal passes through the center of circle.                                                        [1]            

e)      What is the length of tangent from the point (6,4)  to the circle x2+y2+6x+4y-12 =0.   [1]                     

 

22.  a)   From the first principle, find the derivative of y=                                     [4]


.         b) Find the area of ellipse,                                                                          [4]

Best of Luck

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.