Syllabus: Content to Study
- The Standard equation to a Hyperbola
Exercise 8.2
1. Find the coordinates of the vertices, the eccentricity,
and the coordinates of the foci of the hyperbola.
a. $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$
Solution
a2 = 16, b2 = 4
So, a = 4, b = 2.
The coordinates of the vertices = (±a,0) = (±4,0).
Or, e2 = $\frac{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{16 + 4}}{{16}}$ = $\frac{5}{4}$.
So, e = $\frac{{\sqrt 5 }}{2}$
The coordinates of the foci = (±ae,0) = $\left( { \pm
4{\rm{*}}\frac{{\sqrt 5 }}{2},0} \right)$ = (±2$\sqrt 5 $, 0).
b. $\frac{{{{\rm{y}}^2}}}{{16}} -
\frac{{{{\rm{x}}^2}}}{9}$ = 1
Solution
Or, $\frac{{{{\rm{y}}^2}}}{{16}} - \frac{{{{\rm{x}}^2}}}{9}$
= 1
Transverse axis is along the y – axis.
a2 = 16, b2 = 9.
So, a = 4, b = 3.
The coordinates of the vertices = (0,±a) = (0,±4)
Or, e2 = $\frac{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{16 + 9}}{{16}}$ =
$\frac{{25}}{{16}}$.
So, e = $\frac{5}{4}$.
The coordinates of the foci = (0,±ae) = $\left( {0, \pm
4{\rm{*}}\frac{5}{4}} \right)$ = (0,±5).
c. 3x2 – 4y2 = 36
Solution
3x2 – 4y2 = 36.
Or, $\frac{{{{\rm{x}}^2}}}{{12}}$ – $\frac{{{{\rm{y}}^2}}}{9}$
= 1
Or, a2 = 12, b2= 9.
So, a = 2$\sqrt 3 $, b = 3.
The coordinates of the vertices = (±a,0) = $\left( { \pm
2\sqrt 3 ,0} \right)$.
e2 = $\frac{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{12 + 9}}{{12}}$ = $\frac{{21}}{{12}}$
= $\frac{7}{4}$.
So, e = $\frac{{\sqrt 7 }}{2}$.
The coordinates of the foci = (±ae,0) = $\left( { \pm 2\sqrt
3 {\rm{*}}\frac{{\sqrt 7 }}{2},0} \right)$ = (±$\sqrt {21} $,0).
d. x2 – 4y2 – 4x = 0
Solution
Given hyperbola is x2 – 4y2 –
4x = 0
Or, (x – 2)2 – 4y2 = 4
Or, $\frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{4} - \frac{{{{\rm{y}}^2}}}{1}$
= 1…(i)
So, a2 = 4, b2 = 1.
Centre (h,k) = (2,0)
We have, b2 = a2(e2 –
1).
Or, $\frac{1}{4}$ = e2 – 1.
So, e = $\frac{{\sqrt 5 }}{2}$.
Vertices = (h ± a,k) = (2 ± 2,0) = (4,0),(0,0)
And foci = (h ± ae,k) = $\left( {2 \pm 2.\frac{{\sqrt 5
}}{2},0} \right)$ = (2 ± $\sqrt 5 $,0).
e. 9x2 + 36x – 16y2 + 32y
= 124
Solution
Given hyperbola is, 9x2 + 36x – 16y2 +
32y = 124.
Or, 9(x + 2)2 – 16(y – 1)2 =
36 – 16 + 124 = 144.
So, $\frac{{{{\left( {{\rm{x}} + 2} \right)}^2}}}{{16}} -
\frac{{{{\left( {{\rm{y}} - 1} \right)}^2}}}{9}$ = 1 …(i)
So, centre(h,k) = (- 2,1),a2 = 16, b2 =
9.
Vertices = (h ± a,k) = (- 2 ± 4, 1) = (2,1),(-6,1).
Eccentricity, e = $\sqrt {1 +
\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} $ = $\sqrt {1 + \frac{9}{{16}}} $ =
$\frac{5}{4}$.
And, foci = (h ± ae,k) = $\left( { - 2 \pm 4.{\rm{\:
}}\frac{5}{4},1} \right)$ = (3,1), (-7,1).
f. 16x2-9y2-64x-54y+127=0
Solution:
16x² - 64x - 9y² - 54y + 127 = 0
Or, 16(x² - 4x) - 9(y² + 6y) + 127 = 0
Or, 16(x² - 4x + 4) -16(4) - 9(y² + 6y + 9) + 9(9) + 127 = 0
Or, 16(x - 2)² - 9(y + 3)² = -144
Or, $ \Rightarrow \frac{{16{{(x - 2)}^2} - 9{{(y +
3)}^2}}}{{144}} = - 1$
Or, $ \Rightarrow \frac{{{{(x - 2)}^2}}}{9} - \frac{{{{(y +
3)}^2}}}{{16}} = - 1$
Comparing with $\frac{{{{(x - h)}^2}}}{{{a^2}}} -
\frac{{{{(y - k)}^2}}}{{{b^2}}} = -1$
a=3, b=4, h=2, k=3
Thus,
Vertices = (h,k±b) = (2,-3±4) = (2,1) or (2,-7)
Eccentricity = $\sqrt {1 + \frac{{{a^2}}}{{{b^2}}}} $
$ = \sqrt {1 + \frac{{{3^2}}}{{{4^2}}}} = \frac{5}{4}$
Foci = (h,k±be)= (2,-3±4×(5/4)) = (2,2) or (2,-8)
2. Deduce the equation to the hyperbola in the standard
form.
a. with a focus at (-5,0) and a vertex at (2,0).
Solution
Vertex at (2,0) and focus at (-5,0),
Here, a = 2, ae = 5
Or, ae = 5.
Or, 2.e = 5
So e = $\frac{5}{2}$.
Or, b2 = a2(e2 –
1) = 4 $\left( {\frac{{25}}{4} - 1} \right)$ = 21.
The equation of the hyperbola is
$\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$
= 1.
Or, $\frac{{{{\rm{x}}^2}}}{4} - \frac{{{{\rm{y}}^2}}}{{21}}$
= 1
Or, 21x2 – 4y2 = 84.
b. with a focus at (0,5) and a vertex at (0,-3).
Solution
Transverse axis is along the y – axis. Focus at (0,5) and vertex (0.-3).
ae = 5 and a = 3.
Or, ae = 3.
Or, 3e = 5
So, e = $\frac{5}{3}$.
Or, b2 = a2(e2 –
1) = 9 $\left( {\frac{{25}}{9} - 1} \right)$ = 16.
The equation of the hyperbola is:
Or, $\frac{{{{\rm{y}}^2}}}{{{{\rm{a}}^2}}}$ –
$\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1.
Or, $\frac{{{{\rm{y}}^2}}}{9}$ –
$\frac{{{{\rm{x}}^2}}}{{16}}$ = 1.
So, 16y2 – 9x2 = 144.
c. with a focus at (-7,0) and eccentricity 7/4.
Solution
Or, ae = 7.
Or, e = $\frac{7}{4}$.
Or, a. $\frac{7}{4}$ = 7
So, a = 4.
or, b2 = a2(e2 – 1) = 16 $\left(
{\frac{{49}}{{16}} - 1} \right)$ = 33
The equation of the hyperbola is
Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} -
\frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1
Or, $\frac{{{{\rm{x}}^2}}}{{16}} -
\frac{{{{\rm{y}}^3}}}{{33}}$ = 1
d. with a vertex at (0,8) and passing through (4,8 $\sqrt
2 $)
Solution
Transverse axis along the y – axis.
Here, a = 8.
The equation of the hyperbola is:
Or, $\frac{{{{\rm{y}}^2}}}{{{{\rm{a}}^2}}} -
\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1.
Or, $\frac{{{{\rm{y}}^2}}}{{64}}$ –
$\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(i)
It passes through (4,8$\sqrt 2 $),so.
Or, $\frac{{128}}{{64}} - \frac{{16}}{{{{\rm{b}}^2}}}$ = 1.
Or, 2 – $\frac{{16}}{{{{\rm{b}}^2}}}$ = 1.
Or, $\frac{{16}}{{{{\rm{b}}^2}}}$ = 1
So, b2 = 16.
From (i) $\frac{{{{\rm{y}}^2}}}{{64}}$ –
$\frac{{{{\rm{x}}^2}}}{{16}}$ = 1.
Which is the required equation of the parabola.
e. with length of the transverse axis =8 and eccentricity
=2
Given,
Length of transverse axis = 2a = 8 → a=4
Length of conjugate axis =2b
Eccentricity = 2
i.e., $\sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} = 2$
Squaring Both sides,
$[1 + \frac{{{b^2}}}{{{a^2}}} = 4$
$\frac{{{a^2} + {b^2}}}{{{a^2}}} = 4$
Or, 3a2=b2
Or, 3×42=b2
Or, b2=48
And a2=16
Thus, Equation of Hyperbola = $\frac{{{x^2}}}{{{a^2}}} -
\frac{{{y^2}}}{{{b^2}}} = 1$
$\Rightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$