Hyperbola Exercise 8.2 Class 12 Basic Mathematics Solution [NEB UPDATED]

Syllabus: Content to Study

  1. The Standard equation to a Hyperbola
    Hyperbola Exercise 8.2 Class 12 Basic Mathematics Solution [NEB UPDATED]

Exercise 8.2

1. Find the coordinates of the vertices, the eccentricity, and the coordinates of the foci of the hyperbola.

a. $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$

Solution

a2 = 16, b2 = 4

So, a = 4, b = 2.

The coordinates of the vertices = (±a,0) = (±4,0).

Or, e2 = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{16 + 4}}{{16}}$ = $\frac{5}{4}$.

So, e = $\frac{{\sqrt 5 }}{2}$

The coordinates of the foci = (±ae,0) = $\left( { \pm 4{\rm{*}}\frac{{\sqrt 5 }}{2},0} \right)$ = (±2$\sqrt 5 $, 0).

 

b. $\frac{{{{\rm{y}}^2}}}{{16}} - \frac{{{{\rm{x}}^2}}}{9}$ = 1

Solution

Or, $\frac{{{{\rm{y}}^2}}}{{16}} - \frac{{{{\rm{x}}^2}}}{9}$ = 1

Transverse axis is along the y – axis.

a2 = 16, b2 = 9.

So, a = 4, b = 3.

The coordinates of the vertices = (0,±a) = (0,±4)

Or, e2 = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{16 + 9}}{{16}}$ = $\frac{{25}}{{16}}$.

So, e = $\frac{5}{4}$.

The coordinates of the foci = (0,±ae) = $\left( {0, \pm 4{\rm{*}}\frac{5}{4}} \right)$ = (0,±5).

 

c. 3x2 – 4y2 = 36

Solution

3x2 – 4y2 = 36.

Or, $\frac{{{{\rm{x}}^2}}}{{12}}$ – $\frac{{{{\rm{y}}^2}}}{9}$ = 1

Or, a2 = 12, b2=  9.

So, a = 2$\sqrt 3 $, b = 3.

The coordinates of the vertices = (±a,0) = $\left( { \pm 2\sqrt 3 ,0} \right)$.

e2 = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2}}}{{{{\rm{a}}^2}}}$ = $\frac{{12 + 9}}{{12}}$ = $\frac{{21}}{{12}}$ = $\frac{7}{4}$.

So, e = $\frac{{\sqrt 7 }}{2}$.

The coordinates of the foci = (±ae,0) = $\left( { \pm 2\sqrt 3 {\rm{*}}\frac{{\sqrt 7 }}{2},0} \right)$ = (±$\sqrt {21} $,0).

 

d. x2 – 4y2 – 4x = 0

Solution

Given hyperbola is x2 – 4y2 – 4x = 0

Or, (x – 2)2 – 4y2 = 4

Or, $\frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{4} - \frac{{{{\rm{y}}^2}}}{1}$ = 1…(i)

So, a2 = 4, b2 = 1.

Centre (h,k) = (2,0)

We have, b2 = a2(e2 – 1).

Or, $\frac{1}{4}$ = e2 – 1.

So, e = $\frac{{\sqrt 5 }}{2}$.

Vertices = (h ± a,k) = (2 ± 2,0) = (4,0),(0,0)

And foci = (h ± ae,k) = $\left( {2 \pm 2.\frac{{\sqrt 5 }}{2},0} \right)$ = (2 ± $\sqrt 5 $,0).

 

e. 9x2 + 36x – 16y2 + 32y = 124

Solution

Given hyperbola is, 9x2 + 36x – 16y2 + 32y = 124.

Or, 9(x + 2)2 – 16(y – 1)2 = 36 – 16 + 124 = 144.

So, $\frac{{{{\left( {{\rm{x}} + 2} \right)}^2}}}{{16}} - \frac{{{{\left( {{\rm{y}} - 1} \right)}^2}}}{9}$ = 1 …(i)

So, centre(h,k) = (- 2,1),a2 = 16, b2 = 9.

Vertices = (h ± a,k) = (- 2 ± 4, 1) = (2,1),(-6,1).

Eccentricity, e = $\sqrt {1 + \frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} $ = $\sqrt {1 + \frac{9}{{16}}} $ = $\frac{5}{4}$.

And, foci = (h ± ae,k) = $\left( { - 2 \pm 4.{\rm{\: }}\frac{5}{4},1} \right)$ = (3,1), (-7,1).

 f. 16x2-9y2-64x-54y+127=0

Solution:

16x² - 64x - 9y² - 54y + 127 = 0

Or, 16(x² - 4x) - 9(y² + 6y) + 127 = 0

Or, 16(x² - 4x + 4) -16(4) - 9(y² + 6y + 9) + 9(9) + 127 = 0

Or, 16(x - 2)² - 9(y + 3)² = -144

Or, $ \Rightarrow \frac{{16{{(x - 2)}^2} - 9{{(y + 3)}^2}}}{{144}} =  - 1$

Or, $ \Rightarrow \frac{{{{(x - 2)}^2}}}{9} - \frac{{{{(y + 3)}^2}}}{{16}} =  - 1$

Comparing with $\frac{{{{(x - h)}^2}}}{{{a^2}}} - \frac{{{{(y - k)}^2}}}{{{b^2}}} = -1$

a=3, b=4, h=2, k=3

Thus,

Vertices = (h,k±b) = (2,-3±4) = (2,1) or (2,-7)

Eccentricity = $\sqrt {1 + \frac{{{a^2}}}{{{b^2}}}} $

$ = \sqrt {1 + \frac{{{3^2}}}{{{4^2}}}}  = \frac{5}{4}$

Foci = (h,k±be)= (2,-3±4×(5/4)) = (2,2) or (2,-8)

2. Deduce the equation to the hyperbola in the standard form.

a. with a focus at (-5,0) and a vertex at (2,0).

Solution

Vertex at (2,0) and focus at (-5,0),

Here, a = 2, ae = 5

Or, ae = 5.

Or, 2.e = 5

So e = $\frac{5}{2}$.

Or, b2 = a2(e2 – 1) = 4 $\left( {\frac{{25}}{4} - 1} \right)$ = 21.

The equation of the hyperbola is $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1.

Or, $\frac{{{{\rm{x}}^2}}}{4} - \frac{{{{\rm{y}}^2}}}{{21}}$ = 1

Or, 21x2 – 4y2 = 84.

 

b. with a focus at (0,5) and a vertex at (0,-3).

Solution
Transverse axis is along the y – axis. Focus at (0,5) and vertex (0.-3).

ae = 5 and a = 3.

Or, ae = 3.

Or, 3e = 5

So, e = $\frac{5}{3}$.

Or, b2 = a2(e2 – 1) = 9 $\left( {\frac{{25}}{9} - 1} \right)$ = 16.

The equation of the hyperbola is:

Or, $\frac{{{{\rm{y}}^2}}}{{{{\rm{a}}^2}}}$ – $\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1.

Or, $\frac{{{{\rm{y}}^2}}}{9}$ – $\frac{{{{\rm{x}}^2}}}{{16}}$ = 1.

So, 16y2 – 9x2 = 144.

 

c. with a focus at (-7,0) and eccentricity 7/4.

Solution

Or, ae = 7.

Or, e = $\frac{7}{4}$.

Or, a. $\frac{7}{4}$ = 7

So, a = 4.
or, b2 = a2(e2 – 1) = 16 $\left( {\frac{{49}}{{16}} - 1} \right)$ = 33

The equation of the hyperbola is

Or, $\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}}$ = 1

Or, $\frac{{{{\rm{x}}^2}}}{{16}} - \frac{{{{\rm{y}}^3}}}{{33}}$ = 1

 

d. with a vertex at (0,8) and passing through (4,8 $\sqrt 2 $)

Solution

Transverse axis along the y – axis.

Here, a = 8.

The equation of the hyperbola is:

Or, $\frac{{{{\rm{y}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1.

Or, $\frac{{{{\rm{y}}^2}}}{{64}}$ – $\frac{{{{\rm{x}}^2}}}{{{{\rm{b}}^2}}}$ = 1 …(i)

It passes through (4,8$\sqrt 2 $),so.

Or, $\frac{{128}}{{64}} - \frac{{16}}{{{{\rm{b}}^2}}}$ = 1.

Or, 2 – $\frac{{16}}{{{{\rm{b}}^2}}}$ = 1.

Or, $\frac{{16}}{{{{\rm{b}}^2}}}$ = 1

So, b2 = 16.

From (i) $\frac{{{{\rm{y}}^2}}}{{64}}$ – $\frac{{{{\rm{x}}^2}}}{{16}}$ = 1.

Which is the required equation of the parabola.

 

e. with length of the transverse axis =8 and eccentricity =2

Given,

Length of transverse axis = 2a = 8 → a=4

Length of conjugate axis =2b

Eccentricity = 2

i.e., $\sqrt {1 + \frac{{{b^2}}}{{{a^2}}}}  = 2$

Squaring Both sides,

$[1 + \frac{{{b^2}}}{{{a^2}}} = 4$

$\frac{{{a^2} + {b^2}}}{{{a^2}}} = 4$

Or, 3a2=b2

Or, 3×42=b2

Or, b2=48

And a2=16

Thus, Equation of Hyperbola = $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$

$\Rightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.