Find the differential equation of the family of curves $y = A{e^{2x}} + B{e^{ - 3x}}$, where A and B are arbitrary constants.
Solution:
Given, y=Ae2x+Be−3x......(1)
Now differentiating both sides with respect to x we
get,
$\frac{{dy}}{{dx}}$=2Ae2x−3Be−3x ……..(2)
Multiplying equation (1) by 2 and subtracting from (2)
$\frac{{dy}}{{dx}}$ - 2y=-5Be−3x…….(3)
Differentiating above equation, we get
$\frac{{{d^2}y}}{{d{x^2}}}$-2$\frac{{dy}}{{dx}}$=15 Be−3x……(4)
Multiplying Equation (3) by 3 and adding with equation (4)
$\frac{{{d^2}y}}{{d{x^2}}}$-2$\frac{{dy}}{{dx}}$ + 3$\frac{{dy}}{{dx}}$-6y=15
Be−3x -15 Be−3x
$\frac{{{d^2}y}}{{d{x^2}}}$ + $\frac{{dy}}{{dx}}$ -6y = 0