Syllabus: Content to study
- Co-ordinate in space
- Distance between two points
- Locs and Equations
- Section Formulae: Internal Division and External Division
Exercise: 9.1
1. Find the distance between the points
Solution
a. (-1, 4, 3) and (2,2,-3)
d = $\sqrt {{{\left( {2 + 1} \right)}^2} + {{\left( {2 - 4}
\right)}^2} + {{\left( { - 3 - 3} \right)}^2}} $ = $\sqrt {9 + 4 + 36} $ =
$\sqrt {49} $ = 7
b. (4,-1, 5) and (-4, 3, 6)
d = $\sqrt {{{\left( { - 4 - 4} \right)}^2} + {{\left( {3 +
1} \right)}^2} + {{\left( {6 - 5} \right)}^2}} $ = $\sqrt {64 + 16 + 1} $ =
$\sqrt {81} $ = 9.
2. a) Show that the point (2, 0, -4), (4, 2, 4) and (10,
2, -2) are the vertices of an equilateral triangle.
Solution
The given vertices are A(2,0,-4), B(4,2,4) and C(10,2,-2).
To show: AB = BC = CA.
Now, AB = $\sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {2
- 0} \right)}^2} + {{\left( {4 + 4} \right)}^2}} $ = $\sqrt {4 + 4 + 64} $ =
$\sqrt {72} $ = 6$\sqrt 2 $.
BC = $\sqrt {{{\left( {10 - 4} \right)}^2} + {{\left( {2 -
0} \right)}^2} + {{\left( { - 2 - 4} \right)}^2}} $ = $\sqrt {36 + 0 + 36}
{\rm{\: }}$ = $\sqrt {72} $ = 6$\sqrt 2 $.
And CA = $\sqrt {{{\left( {2 - 10} \right)}^2} + {{\left( {0
- 2} \right)}^2} + {{\left( { - 4 + 2} \right)}^2}} $ = $\sqrt {64 + 4 + 4}
{\rm{\: }}$ = $\sqrt {72} $ = 6$\sqrt 2 $.
So, AB = BC = CA ,i.e. $\Delta $ABC is equilateral.
b. Show that the point (0, 7, 10), (-1, 6, 6) and (-4, 9,
6) are the vertices of a right-angled isosceles triangle.
Solution
The given vertices are A(0,7,10), B(-1,6,6) and C(-4,9,6).
To show: $\Delta $ABC is an isosceles triangle.
Now, AB = $\sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left(
{6 - 7} \right)}^2} + {{\left( {6 - 10} \right)}^2}} $ = $\sqrt {1 + 1 + 16} $
= $\sqrt {18} $ = 3$\sqrt 2 $.
BC = $\sqrt {{{\left( { - 4 - 1} \right)}^2} + {{\left( {9 -
6} \right)}^2} + {{\left( {6 - 6} \right)}^2}} $ = $\sqrt {9 + 9 + 0} {\rm{\:
}}$ = $\sqrt {18} $ = 3$\sqrt 2 $.
And CA = $\sqrt {{{\left( {0 + 4} \right)}^2} + {{\left( {7
- 9} \right)}^2} + {{\left( {10 - 6} \right)}^2}} $ = $\sqrt {16 + 4 + 16}
{\rm{\: }}$ = $\sqrt {36} $ = 6.
So, AB2 + BC2 = 18 + 18 = 36
= CA2.
So, AB = BC and AB2 + BC2 =
CA2 (i.e. $\angle $ B = 90°)
So, $\Delta $ ABC is an isosceles right angled.
3) a. Show that the points (1, 2, 3), (-1, -2, -1), (2,
3, 2) and (4, 7, 6) are the vertices of a parallelogram.
Solution
The given vertices are A(1,2,3), B(-1,-2,-1),C(2,3,2) and
D(4,7,6).
To show: ABCD is a parallelogram.
Now, AB = $\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left(
{ - 2 - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} $ = $\sqrt {4 + 16 +
16} $ = $\sqrt {36} $ = 6 .
BC = $\sqrt {{{\left( {2 + 1} \right)}^2} + {{\left( {3 + 2}
\right)}^2} + {{\left( {2 + 1} \right)}^2}} $ = $\sqrt {9 + 25 + 9} $ = $\sqrt
{41} $.
CD = $\sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {7 - 3}
\right)}^2} + {{\left( {6 - 2} \right)}^2}} $ = $\sqrt {4 + 16 + 16} $ = $\sqrt
{36} $ = 6.
And, DA = $\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2
- 7} \right)}^2} + {{\left( {3 - 6} \right)}^2}} $ = $\sqrt {9 + 25 + 9} $ =
$\sqrt {41} $.
So, AB = CD and BC = DA.
So, ABCD is a parallelogram.
b. Show that the points (1, 1, 1), (-2, 4, 1), (-1, 5, 5)
and (2, 2, 5) are the vertices of square.
Solution
The given vertices are A(1,1,1), B(-2,4,1),C(-1,5,5) and
D(2,2,5).
To show: ABCD is a square.
Now, AB = $\sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left(
{4 - 1} \right)}^2} + {{\left( {1 - 1} \right)}^2}} $ = $\sqrt {9 + 9 + 0} $ =
$\sqrt {18} $ = 3$\sqrt 2 $.
BC = $\sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {5 -
4} \right)}^2} + {{\left( {5 - 1} \right)}^2}} $ = $\sqrt {1 + 1 + 16} $ =
$\sqrt {18} $. = 3$\sqrt 2 $.
CD = $\sqrt {{{\left( {2 + 1} \right)}^2} + {{\left( {2 - 5}
\right)}^2} + {{\left( {5 - 5} \right)}^2}} $ = $\sqrt {9 + 9 + 0} $ = $\sqrt
{18} $ = 3$\sqrt 2 $.
And, DA = $\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left(
{5 - 1} \right)}^2} + {{\left( {5 - 1} \right)}^2}} $ = $\sqrt {4 + 16 + 16} $
= $\sqrt {36} $. = 6.
Now, AB2 + BC2 = ${\left(
{3\sqrt 2 } \right)^2}$ + ${\left( {3\sqrt 2 } \right)^2}$ = 18 + 18 = 36 = AC2.
So, AB = BC = CD = DA and AB2 + BC2 =
AC2.
So, the vertices are the vertices of a square.
4. Show that the following points are collinear
a. (1, 2, 3), (-2, 3, 4) and (7, 0, 1)
Solution
The given points are A(1,2,3), B(-2,3,4) and C(7,0,1).
To show: A, B, C are collinear.
Now, AB = $\sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left(
{3 - 2} \right)}^2} + {{\left( {4 - 3} \right)}^2}} {\rm{\: }}$= $\sqrt {9 + 1
+ 1} $ = $\sqrt {11} $.
BC = $\sqrt {{{\left( {7 + 2} \right)}^2} + {{\left( {0 - 3}
\right)}^2} + {{\left( {1 - 4} \right)}^2}} $ = $\sqrt {81 + 9 + 9} $ = $\sqrt
{99} $ = 3$\sqrt {11} $.
Now, AB + CA = $\sqrt {11} $ + 2$\sqrt {11} $ = 3$\sqrt {11}
$ = BC.
i.e. A,B and C are collinear.
b. (-2, 3, 5), (1, 2, 3) and (7,0,-1)
Now, AB = $\sqrt {{{\left( {1 + 2} \right)}^2} + {{\left( {2
- 3} \right)}^2} + {{\left( {3 - 5} \right)}^2}} $ = $\sqrt {9 + 1 + 4} $ =
$\sqrt {14} $.
BC = $\sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {0 - 2}
\right)}^2} + {{\left( { - 1 - 3} \right)}^2}} $ = $\sqrt {36 + 4 + 16} $ =
$\sqrt {56} $ = 2$\sqrt {14} $.
And CA = $\sqrt {{{\left( {7 + 2} \right)}^2} + {{\left( {0
- 3} \right)}^2} + {{\left( { - 1 - 5} \right)}^2}} $ = $\sqrt {81 + 9 + 36} $
= $\sqrt {126} $ = 3$\sqrt {14} $.
So, AB + BC + CA.
SO, A, B, C are collinear.
5) a. Find the locus of a point which moves such that its
distance from the fixed p (1,2,-2) is always 5.
Solution
Let P(x,y,z) be the point whose locus is required and which
remains at a distance 5 from the given point A(1,2,-2).
So, PA = 5.
Or, PA2 = 25.
Or, (x – 1)2 + (y – 2)2 + (z
+ 2)2 = 25.
So, x2 + y2 + z2 –
2x – 4y + 4z – 16 = 0 is the required locus.
b. Find the locus of a point which moves such that it is
equidistant from two fixed po (-1, 2, 3) and (4,-1, 5).
Solution
Let P(x, y, z) be the given point which is at and equal
distance from the points A(-1,2,3) and B(4,-1,5).
So, PA = PB.
Or, PA2 = PB2
Or, (x + 1)2 + (y – 2)2 + (z
– 3)2 = (x – 4)2 + (y + 1)2 +
(z – 5)2.
Or, x2 + 2x + 1 + y2 – 4y +
4 + z2 – 6z + 9 = x2 – 8x + 16 + y2 +
2y + 1 + z2 – 10z + 25.
Or, 10x – 6y + 4z – 28 = 0.
So, 5x – 3y + 2z – 14 = 0 is the required locus.
6. Find the coordinates of the point which is equidistant
from the four points O, A, B and C where O is the origin and A, B and C are the
points on the x-, y- and z-axis respectively a distances a, b and c from the
origin.
Solution
Let P(x,y,z) be the point equidistant from O (0,0,0),
A(a,0,0) , B(0,b,0) and C(0,0,c).
So, OP = AP = BP = CP
Now, OP = AP
Or, OP2 = AP2
Or, (x – 0)2 + (y – 0)2 + (z
– 0)2 = (x – a)2 + (y – 0)2 +
(z – 0)2.
Or, x2 + y2 + z2 =
x2 – 2ax + a2 + y2 + z2.
Or, 0 = - 2ax + a2.
Or, a( -2x + a) = 0
So, - 2x + a = 0 (a ≠ 0).
So, x = $\frac{{\rm{a}}}{2}$.
Similarly, OP = BP à y = $\frac{{\rm{b}}}{2}$ and OP = CP à
z = $\frac{{\rm{c}}}{2}$.
So, the required point if P $\left(
{\frac{{\rm{a}}}{2},\frac{{\rm{b}}}{2},\frac{{\rm{c}}}{2}} \right)$.
7. Find the coordinates of the point which divides the
line segment joining each of the following pair of points internally in the
ratio 1:2 and externally in the ratio 3:2
a. (1, -2, 3) and (1, 2, 3)
Solution
(x1, y1, z1) = (1,-2,3) and
(x2,y2,z2) = (1,2,3).
m1 : m2 = 1 : 2.
So, (x,y,z) = $\left( {\frac{{{{\rm{m}}_1}{{\rm{x}}_2} +
{{\rm{m}}_2}{{\rm{x}}_1}}}{{{{\rm{m}}_1} +
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{y}}_2} +
{{\rm{m}}_2}{{\rm{y}}_1}}}{{{{\rm{m}}_1} +
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{z}}_2} + {{\rm{m}}_2} +
{{\rm{z}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}} \right)$.
= $\left( {\frac{{1.1 + 2.1}}{{1 + 2}},\frac{{1.2 + 2.\left(
{ - 2} \right)}}{{1 + 2}},\frac{{1.3 + 2.3}}{{1 + 2}}} \right)$.
So, (x,y,z) = $\left( {1, - \frac{2}{3},3} \right)$.
For external division m1 : m2 =
3 : 2.
So, (x,y,z) = $\left( {\frac{{{{\rm{m}}_1}{{\rm{x}}_2} -
{{\rm{m}}_2}{{\rm{x}}_1}}}{{{{\rm{m}}_1} -
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{y}}_2} -
{{\rm{m}}_2}{{\rm{y}}_1}}}{{{{\rm{m}}_1} -
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{z}}_2} - {{\rm{m}}_2}{{\rm{z}}_1}}}{{{{\rm{m}}_1}
- {{\rm{m}}_2}}}} \right)$.
Or, (x,y,z) = $\left( {\frac{{3.1 - 2.1}}{{3 -
2}},\frac{{3.2 - 2.\left( { - 2} \right)}}{{3 - 2}},\frac{{3.3 - 2.3}}{{3 -
2}}} \right)$
So, (xy,z) = (1,10,3).
b. (2, 0, 1) and (4, -2, 5)
(x1,y1,z1) = (2,0,1) and (x2,y2,z2)
= (4,-2,5) and m1 : m2 = 1 : 2.
So, (x,y,z) = $\left( {\frac{{1.4 + 2.2}}{{1 +
2}},\frac{{1.\left( { - 2} \right) + 2.0}}{{1 + 2}},\frac{{1.5 + 2.1}}{{1 +
2}}} \right)$.
So, (x,y,z) = $\left( {\frac{8}{3}, -
\frac{2}{3},\frac{7}{3}} \right)$.
For external division: m1 : m2 =
3 : 2.
So, (x,y,z) = $\left( {\frac{{3.4 - 2.2}}{{3 -
2}},\frac{{3.\left( { - 2} \right) - 2.0}}{{3 - 2}},\frac{{3.5 - 2.1}}{{3 -
2}}} \right)$.
So, (x,y,z) = (8,-6,13).
8. Find the coordinates of the mid-points of the join of
each of the following pair of points
a. (-4, 3, 6) and (2, 1, -3)
Solution
Given points, (x1,y1,z1) =
(-4,3,6).
(x2,y2z2) = (6,1,-3)
So, Mid – point = $\left( {\frac{{{{\rm{x}}_1} +
{{\rm{x}}_2}}}{2},\frac{{{{\rm{y}}_1} + {{\rm{y}}_2}}}{2},\frac{{{{\rm{z}}_1} +
{{\rm{z}}_2}}}{2}} \right)$ = $\left( {\frac{{ - 4 + 6}}{2},\frac{{3 +
1}}{2},\frac{{6 - 3}}{2}} \right)$.
= $\left( {1,2,\frac{3}{2}} \right)$
b. (2,5,-8) and (4, -1, 6)
Given points are, (x1,y1,z1)
= (2,5,-8) and (x2,y2,z2) = (4,-1,6)
Mid – point = $\left( {\frac{{2 + 4}}{2},\frac{{5 -
1}}{2},\frac{{ - 8 + 6}}{2}} \right)$ = (3,2,-1).
9. If A(3, 4, 5), B(- 1, 2, 0) and C(- 3, 4, - 2) are the
vertices of the triangle ABC, find the length of the median joining the vertex
A(3, 4, 5) and middle point of its opposite side.
Solution
Middle point of BC is = P $\left( {\frac{{ - 1 -
3}}{2},\frac{{2 + 4}}{2},\frac{{0 - 2}}{2}} \right)$ = P(-2,3,-1).
So, length of the median, AP = $\sqrt {{{\left( {3 + 2}
\right)}^2} + {{\left( {4 - 3} \right)}^2} + {{\left( {5 + 1} \right)}^2}} $ =
$\sqrt {25 + 1 + 36} $ = $\sqrt {62} $.
So, AP = $\sqrt {62} $ units.
10) a. Find the ratio in which the line joining the
points (-2, 4, 7) and (3, -5, -8) is divided by the xy-plane.
Solution
The given points are A(x1,y1,z1)
= (-2,4,7) and B(x2,y2,z2) = (3,-5,-8).
Any point on the xy – plane is P(a,b,0).
Let P divides AB in the ratio m1 : m2.
Then z = $\frac{{{{\rm{m}}_1}{{\rm{z}}_2} +
{{\rm{m}}_2}{{\rm{z}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$.
Or, 0 = $\frac{{ - 8{{\rm{m}}_1} +
7{{\rm{m}}_2}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$.
Or, 8m1 = 7m2.
So, m1 : m2 = 7 : 8.
b. Find the ratio in which the yz-plane divides the line
joining the points (4, 6, 7) and (-1, 2, 5). Find also the coordinates of the
points on the yz-plane.
Solution
The given points are A(x1,y1,z1)
= (4,6,7) and B(x2,y2,z2) = (-1,2,5).
Any point on the yz – plane is P(0,b,c).
Now, let P divide AB in the ratio m1:m2.
So, 0 = $\frac{{{{\rm{m}}_1}{{\rm{x}}_2} +
{{\rm{m}}_2}{{\rm{x}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$.
Or, 0 = - m1 + 4m2.
So, m1 : m2 = 4 : 1.
And, b = $\frac{{{{\rm{m}}_1}{{\rm{y}}_2} +
{{\rm{m}}_2}{{\rm{y}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$ = $\frac{{4.2 +
1.6}}{{4 + 1}}$ = $\frac{{14}}{5}$.
And c = $\frac{{{{\rm{m}}_1}.{{\rm{z}}_2} +
{{\rm{m}}_2}.{{\rm{z}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$ = $\frac{{4.5 +
1.7}}{{4 + 1}}$ = $\frac{{27}}{5}$.
Hence, ratio : 4 : 1 and point $\left(
{0,\frac{{14}}{5},\frac{{27}}{5}} \right)$.
c. Given three collinear points A(3, 2, - 4) B(5, 4, - 6)
and C(9, 8, - 10) find the ratio in which B divides AC.
Solution
Let B(5,4,-6) divides the line AC joining A (3,2,-4) and
C(9,8,-10) in the ratio m1:m2.
So, 5 = $\frac{{{{\rm{m}}_1}.{{\rm{x}}_2} +
{{\rm{m}}_2}.{{\rm{x}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$
Where, (x1,y1,z1) =
(3,2,-4).
(x2,y2,z2) = (9,8,-10)
And (x,y,z) = (5,4,-6)
Or, 5m1 + 5m2 = 9m1 +
3m2
Or, 4m1 = 2m2
Or, $\frac{{{{\rm{m}}_1}}}{{{{\rm{m}}_2}}}$ = $\frac{1}{2}$.
So, m1 : m2 = 1 : 2.
11) a. Find the point where the line through the points
(1, 2, 3) and (4, 4, 9) meets the z- plane.
Solution
Given points are A(x1,y1,z1)
= (1,2,3) and B(x2,y2,z2) = (4,-4,9).
Le the line AB cuts the zx – plane at P(a,0,c) in the ratio
m1:m2.
So, 0 = $\frac{{{{\rm{m}}_1}{{\rm{y}}_2} +
{{\rm{m}}_2}{{\rm{y}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$
Or, 0 = - 4m1 + 2m2.
So, m1 : m2 = 1 : 2.
Now, a = $\frac{{{{\rm{m}}_1}{{\rm{x}}_2} + {{\rm{m}}_2}{{\rm{x}}_1}}}{{{{\rm{m}}_1}
+ {{\rm{m}}_2}}}$ = $\frac{{4.1 + 2.1}}{{1 + 2}}$ = 2
c = $\frac{{{{\rm{m}}_1} + {{\rm{z}}_2} +
{{\rm{m}}_2}{{\rm{z}}_1}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}$ = $\frac{{1.9 +
2.3}}{{1 + 2}}$ = 5.
So, the required point on the z-x plane is (2,0,5).
b. Find the point where the line joining the points (2,
-3, 1) and (3, -4, -5) cuts the plane 2x + y + z = 7
Solution
The given plane is 2x + y + z = 7 ….(1)
And the points are A(2,-3,1) and B(3,-4,-5).
Let the plane (1) divide the line AB in the ratio m1 :
m2 at the point P(a,b,c).
So, (a,b,c) = $\left( {\frac{{{{\rm{m}}_1}.{{\rm{x}}_2} +
{{\rm{m}}_2}.{{\rm{x}}_1}}}{{{{\rm{m}}_1} +
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{y}}_2} +
{{\rm{m}}_2}{{\rm{y}}_1}}}{{{{\rm{m}}_1} +
{{\rm{m}}_2}}},\frac{{{{\rm{m}}_1}{{\rm{z}}_2} + {{\rm{m}}_2}{{\rm{z}}_1}}}{{{{\rm{m}}_1}
+ {{\rm{m}}_2}}}} \right)$.
Or, (a,b,c) = $\left( {\frac{{3{{\rm{m}}_1} +
2{{\rm{m}}_2}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}},\frac{{ - 4{{\rm{m}}_1} -
3{{\rm{m}}_2}}}{{{{\rm{n}}_1} + {{\rm{m}}_2}}},\frac{{ - 5{{\rm{m}}_1} +
{{\rm{m}}_2}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}} \right)$ …(2).
The point (a,b,c) lies on (1) so,
Or, 2 $\left( {\frac{{3{{\rm{m}}_1} +
2{{\rm{m}}_2}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}} \right){\rm{\: }}$+ $\left(
{\frac{{ - 4{{\rm{m}}_1} - 3{{\rm{m}}_2}}}{{{{\rm{m}}_1} + {{\rm{m}}_2}}}}
\right)$ + $\left( {\frac{{ - 5{{\rm{m}}_1} + {{\rm{m}}_2}}}{{{{\rm{m}}_1} +
{{\rm{m}}_2}}}} \right)$ = 7.
Or, 6m1 + 4m2 – 4m1 –
3m2 – 5m1 + m2 = 7m1 +
7m2.
Or, - 3m1 + 2m2 = 7m1 +
7m2
Or, - 10m1 = 5m2à m1 :
m2 = - 1 : 2.
Thus, the required point is,
(a,b,c) = $\left( {\frac{{ - 3 + 4}}{{1 + 2}},\frac{{4 -
6}}{{ - 1 + 2}},\frac{{5 + 2}}{{ - 1 + 2}}} \right)$ = (1,-2,7).
12. Show that the following points represent the vertices
of a parallelogram
a. (3, 0, 1), (2, 2, 2), (-1, 3, 3) and (0, 1, 2)
Solution
Given points are A(3,0,1), B(2,2,2), C(-1,3,3) and D(0,1,2).
Now, AB = $\sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( {2
- 0} \right)}^2} + {{\left( {2 - 1} \right)}^2}} $ = $\sqrt {1 + 4 + 1} $ =
$\sqrt 6 $.
BC = $\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {3 -
2} \right)}^2} + {{\left( {3 - 2} \right)}^2}} $ = $\sqrt {9 + 1 + 1} $ =
$\sqrt {11} $.
CD = $\sqrt {{{\left( {0 + 1} \right)}^2} + {{\left( {1 - 3}
\right)}^2} + {{\left( {2 - 3} \right)}^2}} $ = $\sqrt {1 + 4 + 1} $ = $\sqrt 6
.$
And DA = $\sqrt {{{\left( {3 - 0} \right)}^2} + {{\left( {0
- 1} \right)}^2} + {{\left( {1 + 2} \right)}^2}} $ = $\sqrt {9 + 1 + 1} $ =
$\sqrt {11} $.
So, AB = CD and BD = DA,
Hence, A,B,C,D are the vertices of a parallelogram.
b. (1, 3, 4), (-1, 6, 10), (-7, 4, 7) and (-5, 1, 1)
Solution
Given points are A(1,3,4), B(-1,6,10), C(-7,4,7) and
D(-5,1,1).
Now, AB = $\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left(
{6 - 3} \right)}^2} + {{\left( {10 - 4} \right)}^2}} $ = $\sqrt {4 + 9 + 36} $
= 7.
BC = $\sqrt {{{\left( { - 7 + 1} \right)}^2} + {{\left( {4 -
6} \right)}^2} + {{\left( {7 - 10} \right)}^2}} $ = $\sqrt {36 + 4 + 9} $
= 7.
CD = $\sqrt {{{\left( { - 5 + 7} \right)}^2} + {{\left( {1 -
4} \right)}^2} + {{\left( {1 - 7} \right)}^2}} $ = $\sqrt {4 + 9 + 36} $ = 7.
And DA = $\sqrt {{{\left( {1 + 5} \right)}^2} + {{\left( {3
- 1} \right)}^2} + {{\left( {4 - 1} \right)}^2}} $ = $\sqrt {36 + 4 + 9} $ = 7.
So, AB = BC = CD = DA
Hence, A,B,C,D is a parallelogram.
13. Two vertices of a triangle ABC are A(2,-4, 3) and
B(3, - 1, - 2) and its centroid is (1, 0,3) Find the third vertex C.
Solution
Given vertices are A(x1,y1,z1)
= (2,-4,3), B(x2,y2,z2) = (3,-1,-2)
And centroid (x,y,z) = (1,0,3). Let the third vertex be
C(α,β,γ) = (x3,y3,z3).
We have, x = $\frac{{{{\rm{x}}_1} + {{\rm{x}}_2} +
{{\rm{x}}_3}}}{3}$, y = $\frac{{{{\rm{y}}_1} + {{\rm{y}}_2} +
{{\rm{y}}_3}}}{3}$, z = $\frac{{{{\rm{z}}_1} + {{\rm{z}}_2} + {{\rm{z}}_3}}}{3}$
Or, 1 = $\frac{{2 + 3 + \alpha }}{3}$, 0 = $\frac{{ - 4 - 1
+ \beta }}{3}$, 3 = $\frac{{3 - 2 + \gamma }}{3}$
So, α= - 2, β= 5, γ = 8.
So, (α,β,γ) = (-2,5,8).
14. Three vertices of a parallelogram ABCD are A(- 5, 5,
2) B(- 9, - 1, 2) and C( - 3 , -3, 0) Find the coordinates of the fourth
vertex.
Solution
Given vertices are A(-5,5,2), B(-9,-1,2) and C(-3,-3,0).
Let (α,β,γ) be the fourth vertex of the parallelogram ABCD.
Now, mid – point of AC = $\left( {\frac{{ - 5 -
3}}{2},\frac{{5 - 3}}{2},\frac{{2 + 0}}{2}} \right)$ = (-4,1,1).
Since, the diagonal of a parallelogram bisects each other
so,
Mid – point of BD = (-4,4,1).
Now, using mid – point formula for BD, we have,
Or, - 4 = $\frac{{ - 9 + \alpha }}{2}$, 1 = $\frac{{1 +
\beta }}{2}$, 1 = $\frac{{2 + \gamma }}{2}$.
So, α= 1, β = 3, γ= 0.
So, fourth vertex = D(1,3,0).