Exercise: 16.3
1.
a.
Solution:
For x ≥ 0, f(x) = x + 2
Right hand limit at x = 0 is
=
x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\ \to\end{array}$ 0 + (x + 2) = 0 + 2
= 0,
For x < 0, f(x) = 4x + 2
Left hand limit at x = 0 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – (4x + 2) = 0
+ 2 = 2.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
0 f(x) = 2.
b.
Solution:
For x ≥ 1, f(x) = 3x + 2
Right hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + (3x + 2) =
3*1 + 2 = 5,
For x < 1, f(x) = 2x.
Left hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (2x) = 2 * 1
= 2.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 +
f(x) ≠ x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
1 f(x) does not exist.
c.
Solution:
For x > 2, f(x) = 5x + 2
Right hand limit at x = 2 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (5x + 2) =
5*2 + 2 = 12,
For x < 2, f(x) = 7x – 2
Left hand limit at x = 2 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (7x – 2) =
7*2 – 2 = 12.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 f(x) = 12.
d.
Solution:
For x ≥ 2, f(x) = 3x + 1
Right hand limit at x = 2 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (3x + 1) =
3*2 + 1 = 7,
For x < 2, f(x) = 2x2 – 1
Left hand limit at x = 2 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2x2 –
1) = 2 * 4 – 1 = 7.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 f(x) = 7.
e.
Solution:
For x ≥ 1, f(x) = 2x + 1
Right hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 + (2x + 1) =
2*1 + 1 = 3.
For x < 1, f(x) = 4x2 – 1.
Left hand limit at x = 1 is
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 –
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – (4x2 –
1) = 4*1 – 1 = 3.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 +
f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 1 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
1 f(x) = 3.
f.
Solution:
For x ≥ 1, f(x) = 3x – 2
Right hand limit at x = 2 is
RHL = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + f(x) = x
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 + (3x – 2) = 3*2 – 2 =
4,
For x < 2, f(x) = 2x2 + 1
Left hand limit at x = 2 is
LHL = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 – f(x) = x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – (2x2 +
1) = 2*4 + 1 = 9.
= x$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 +
f(x) ≠x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 2 – f(x)
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 f(x) does not exist.
2.
a.
LHL = h
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 f(2 – h)
= h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0
|2 – h – 2| = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 |h| = 0
RHL = h
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 f(2 + h)
= h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0
|2 + h – 2| = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 |h| =
0.
LHL = RHL
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
2 |x – 2| = 0.
b.
RHL = h
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 f(0 + h)
= h$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0
$\frac{{\left| {0 + {\rm{h}}} \right|}}{{0 + {\rm{h}}}}$ = h
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0
$\frac{{\rm{h}}}{{\rm{h}}}$ = 1.
LHL = h
$\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\left| {0 -
{\rm{h}}} \right|}}{{0 - {\rm{h}}}}$ = h $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$
0 $\frac{{\rm{h}}}{{ - {\rm{h}}}}$ = –1.
LHL ≠ RHL
So, x $\begin{array}{*{20}{c}}{{\rm{lim}}}\\\to\end{array}$ 0 $\frac{{\left| {\rm{x}} \right|}}{{\rm{x}}}$ does not exist.