Solution:
Let the total number of persons in a room be n since two
persons make 1 handshake
∴ The number of handshakes = nC2
So nC2 = 66
⇒$\frac{{n!}}{{2!(n - 2)!}} = 66$
⇒$\frac{{n(n - 1)(n - 2)!}}{{2 \times 1 \times (n - 2)!}} = 66$
⇒$\frac{{n(n - 1)}}{2} = 66$
⇒ n2 – n = 132
⇒ n2 – n – 132 = 0
⇒ n2 – 12n + 11n – 132 = 0
⇒ n(n – 12) + 11(n
– 12) = 0
⇒ (n – 12)(n +
11) = 0
⇒ n – 12 = 0, n
+ 11 = 0
⇒ n = 12, n = – 11
∴ n = 12 .... (∵ n ≠ – 11)