Coordinates in Space Exercise: 9.2 Class 12 Basic Mathematics Solution [NEB UPDATED]

Syllabus: Content to study

  1. Direction Cosine of a line
  2. Direction Cosine of Coordinate axis
  3. Direction cosines of the line through two given points
  4. Projection of a point on a line or plane
  5. Projection of a line segment on a line
  6. Direction Ratios
  7. Angle between two lines
    Coordinates in Space Exercise: 9.2 Class 12 Basic Mathematics Solution [NEB UPDATED]

Exercise 10.2

1. If a line makes an angle of $\frac{\pi }{3}$ and $\frac{\pi }{4}$ with positive x-axis and z-axis respectively. Find the acute angle made by the line with positive y-axis.

Solution:

α = $\frac{\pi }{3}$

, γ = $\frac{\pi }{4}$, β= ?

We have, cos2α + cos2β + cos2γ = 1

Or, $\frac{1}{4}$ + $\frac{1}{2}$ + cos2γ = 1

Or, cos2γ = 1 – $\frac{3}{4}$ = $\frac{1}{4}$.

So, γ = $\frac{\pi }{3}$.

 

2. Show that the direction cosines of a line equally inclined to the axes are ±$\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$

Solution:

Since, the line is equally inclined to the axes so let α be the equal angle made by the line with the axes. So, it’s dc’s are, l = cosα, m = cosα,n = cosα.

We have, l2 + m2 + n2 = 1

Or, cos2α + cos2α + cos2α = 1

Or, 3cos2α = 1

So, cosα = ± $\frac{1}{{\sqrt 3 }}$.

So, the required dc’s are cosα, cosα, cosα, i.e. ±$\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$.

 

3. a) If a, ẞ and y are the angles which a line makes with the coordinate axes, prove that sin2α + sin2β + sin2γ = 2

Solution:

Since, α,β and γ are the angles made by a line with the axes, so it’s dc’s are cosα, cosβ, cos γ.

We have, cos2α + cos2β + cos2 γ = 1.

→1 – sin2α + 1 – sin2β + 1 – sin2γ = 1.

So, sin2α + sin2β + sin2γ = 2.

 

b. If a, ẞ and y are the direction angles of a line, prove that cos 2α + cos 2β + cos 2γ + = 0.

Solution:

Since, α, β and γ are the direction angles of a line so the dc’s are l = cos α, m = cos β and n = cos γ.

We have, cos2α + cos2β + cos2γ = 1   [l2 + m2 + n2 = 1]

Or, $\frac{{1 + cos2\alpha }}{2} + \frac{{1 + cos2\beta }}{2} + \frac{{1 + cos2\gamma }}{2}$ = 1.

So, cos2α + cos2β + cos2γ = 2 – 3 = - 1.

Hence, cos 2α + cos 2β + cos 2γ + = 0.

 

4. Find the direction cosines of each of the lines whose direction ratios are

a. -1,2,2

Solution:

The dr’s are – 1, 2 , 2.

Let 1,m,n be the dc’s

So, $\frac{l}{{ - 1}}$ = $\frac{m}{2}$ = $\frac{n}{2}$ = $\frac{{\left( {\sqrt {{l^2} + {m^2} + {n^2}} } \right)}}{{\sqrt {1 + 4 + 4} }}$ = $\frac{1}{3}$

So, l = $ - \frac{1}{3}$, m = $\frac{2}{3}$, n = $\frac{2}{3}$.

 

b. 2,3,6.

Solution:

The dr’s are 2,3,6

Let l,m,n be the dc’s

So, $\frac{l}{2}$ = $\frac{m}{3}$ = $\frac{n}{6}$ = $\frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {4 + 9 + 36} }}$ = $\frac{1}{7}$.

So, l = $\frac{2}{7}$, m = $\frac{3}{7}$, n = $\frac{6}{7}$.

 

5. Find the direction cosines of the line passing through the points

a. O(0,0,0) and P(2,3,4)

Solution:

Given points are O(0,0,0) and P(2,3,4).

So, OP = $\sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2} + {{\left( {4 - 0} \right)}^2}} $ = $\sqrt {29} $.

So, the dc’s of OP are,

Or, $\frac{{{x_2} - {x_1}}}{{OP}}$, $\frac{{{y_2} - {y_1}}}{{OP}}$, $\frac{{{z_2} - {z_1}}}{{OP}}$.

i.e. $\frac{2}{{\sqrt {29} }},\frac{3}{{\sqrt {29} }},\frac{4}{{\sqrt {29} }}$.

 

b. P(2,3,4) and Q(1,4,6)

Solution:

Given points are P(2,3,4) and Q(1,4,6).

So, PQ = $\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {4 - 3} \right)}^2} + {{\left( {6 - 4} \right)}^2}} $ = $\sqrt {1 + 1 + 4} $ = $\sqrt 6 $.

So, the dc’s of PQ are,

Or, $\frac{{{x_2} - {x_1}}}{{PQ}},\frac{{{y_2} - {y_1}}}{{PQ}},\frac{{{z_2} - {z_1}}}{{PQ}}$

i.e. $ - \frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }},\frac{2}{{\sqrt 6 }}$.

 

c. M(-1,2,-3) and N(4, - 1, 1)

Solution:

Given points are M(-1,2,-3) and N(4,-1,1)

So, MN = $\sqrt {{{\left( {4 + 1} \right)}^2} + {{\left( { - 1 - 2} \right)}^2} + {{\left( {1 + 3} \right)}^2}} $ = $\sqrt {50} $ = 5$\sqrt 2 $.

So, the d.c’s of MN are,

Or, $\frac{{{x_2} - {x_1}}}{{PQ}},\frac{{{y_2} - {y_1}}}{{PQ}},\frac{{{z_2} - {z_1}}}{{PQ}}$

Ie. $\frac{5}{{5\sqrt 2 }}, - \frac{3}{{5\sqrt 2 }},\frac{4}{{5\sqrt 2 }}$.

 

6. Find the angle between the two lines whose direction ratios are

a.1,2,4 and -2,1,5

Solution:

The dr’s are 1,2,4 and -2,1,5.

We have,

Cos θ = $\frac{{{a_1}.{a_2} + {b_1}.{b_2} + {c_1}.{c_2}}}{{\sqrt {a_1^2 + b_2^2 + c_2^2} }}$ = $\frac{{1.\left( { - 2} \right) + 2.1 + 4.5}}{{\sqrt {\left( {1 + 4 + 16} \right)\left( {4 + 1 + 25} \right)} }}$

Or, cosθ = $\frac{{20}}{{\sqrt {21*30} }}$ = $\frac{{20}}{{3\sqrt {70} }}$.

So, θ = cos-1$\left( {\frac{{20}}{{3\sqrt {70} }}} \right)$

 

b. 2, 3, 4 and 1, -2, 1

Solution:

cosθ = $\frac{{2*1 + 3x - 2 + 4*1}}{{\sqrt {\left( {4 + 9 + 16} \right)\left( {1 + 4 + 1} \right)} }}$ = $\frac{0}{{\sqrt {29*6} }}$ = 0.

So, θ= $\frac{\pi }{2}$.

 

c. 1, 2, 2 and 2, 3, 6

Solution:

cosθ = $\frac{{1.2 + 2.3 + 2.6}}{{\sqrt {\left( {1 + 4 + 4} \right)\left( {4 + 9 + 36} \right)} }}$ = $\frac{{20}}{{\sqrt {9*49} }}$ = $\frac{{20}}{{3*7}}$ = $\frac{{20}}{{21}}$.

So, θ= cos-1$\left( {\frac{{20}}{{21}}} \right)$.

 

7. Show that the line joining the points (1, 2, 3) and (-1, -2, -3) is

Solution:

Given points are A(1,2,3) and B(-1,-2,-3)

So, dr’s of AB are x2 – x1,y2 – y1, z2 – z1 i.e. 2,4,6

Now,

a. parallel to the line joining the points (2, 3, 4) and (5, 9, 13)

Given points are C(2,3,4) and D(5,9,13).

So, dr’s of CD are 5 – 2,9 – 3,13 – 4, i.e. 3,6,9.

Since, $\frac{2}{3}$$\frac{4}{6}$ = $\frac{6}{9}$$\left[ {i.e\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}} \right]$

So, AB is parallel to CD. 

b. perpendicular to the line joining the points (-2, 1, 5) and (3, 3, 2)

Given points are E(-2,1,5) and F(3,3,2).

So, dr’s of EF are 3 + 2, 3 – 1, 2 – 5 , i.e. 5,2 – 3.

Thus, dr’s of AB are a1 = 2,b1 = 4,c1 = 6.

And the dr’s of EF are a2 = 5,b2 = 2,c2 = -3.

Now, a1.a2 + b1.b2 + c1.c2 = 2.5 + 4.2 + 6.(-3) = 18 – 18 = 0.

So, a1.a2 + b1.b2 + c1.c2 = 0

So, AB is perpendicular to EF.

 

8. a) For what value of k makes the line joining the points (1, 2, k) and (5, 7, 15) perpendicular to the line joining the points (4, 7, 1) and (3, 5, 3)?

Solution:

Given points are A(1,2,k), B(5,7,15), C(4,7,1) and D(3,5,3).

So, the dr’s of AB are 5 – 1, 7 – 2 , 15 – k, i.e. 4,5,15 – k.

And the dr’s of CD are 3 – 4, 5 – 7, 3 – 1, i.e. – 1, - 2 ,2.

Since, AB is perpendicular to CD, so a1a2 + b1.b2 + c1.c2 = 0

Or, 4x – 1 + 5x – 2 + (15 – k)2 = 0

Or, - 14 + 30 – 2k = 0

So, k = 8.

 

b. For what value of k makes the line joining the points (1, 2, k) and (4, 5, 6) parallel the line joining the points (-4, 3, -6) and (2, 9, 2)?

Solution:

Given points are A(1,2,k), B(4,5,6), C(-4,3,-6) and D(2,9,2).

So, the dr’s of AB are 4 – 1, 5 – 2, 6 – k, i.e. 3,3,6 – k.

And the dr’s of CD are 2 + 9, 9 – 3 , 2 + 6, i.e. 6,6,8.

Since, AB is parallel to CD if,

Or, $\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}$

Ie. $\frac{3}{6} = \frac{3}{6} = \frac{{6 - k}}{8}$

Or, $\frac{{6 - k}}{8}$ = $\frac{1}{2}$→ 6 – k = 4.

So, k = 2.

9. If O is the origin and P(2, 3, 4) and Q(1, - 2, 1) be any two points, show that OP is perpendicular to OQ.

 Solution:

It is given that

Line joining O (0, 0, 0) and P (2, 3, 4) is written as

OP = 2i + 3j + 4k

Line joining O (0, 0, 0) and Q (1, -2, 1) is written as

OQ = i – 2j + k

In order prove that these two lines are perpendicular we must show that angle between these two lines is π/2

Dot product

|OP||OQ| Cos θ = O where

Cos θ =0

OP. OQ=0

Substituting the values (2i + 3j + 4k). (i – 2j + k) = 2 – 6 + 4 = 0 Therefore, it is proved that these two lines are perpendicular.

10. Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to 3,-1, 1 and -3, 2, 4.

Solution:

Let l,m,n be the d.c’s of a line which is perpendicular to the lines with dr’s 3,-1,-1 and – 3,2,4/

So, 3l – m + n = 0    [l1l2 + m1.m2 + n1.n2 = 0]

And – 3l + 2m + 4n = 0

Or, $\frac{l}{{ - 4 - 2}} = \frac{m}{{ - 3 - 12}} = \frac{n}{{6 - 3}}$

Or, $\frac{l}{2} = \frac{m}{5} = \frac{n}{{ - 1}}$ = $\frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {4 + 25 + 1} }}$ = $\frac{1}{{\sqrt {30} }}$.

So, the d.c’s l,m,n are $\frac{2}{{\sqrt {30} }}$, $\frac{5}{{\sqrt {30} }}$, $ - \frac{1}{{\sqrt {30} }}$.

 

11. Show that the angle between two diagonals of a cube is cos-1$\left( {\frac{1}{3}} \right)$

Solution:

Let 0(0,0,0) be the origin taken as one of the vertex of a cube of side OA = OB = OC = a, whose two diagonals are OP and AR where A (a,0,0) , R(0,a,a) and P(a,a,a). The cube is shown aside.

Now,

OP = $\sqrt {{{\left( {a - 0} \right)}^2} + {{\left( {a - 0} \right)}^2} + {{\left( {a - 0} \right)}^2}} $ = a$\sqrt 3 $.

And AR = $\sqrt {{{\left( {0 - a} \right)}^2} + {{\left( {a - 0} \right)}^2} + {{\left( {a - 0} \right)}^2}} $ = a$\sqrt 3 $.

So, the d.c’s of AR = $\frac{{a - 0}}{{a\sqrt 3 }}$, $\frac{{a - 0}}{{a\sqrt 3 }}$, $\frac{{a - 0}}{{a\sqrt 3 }}$.

i.e. $\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }}$.

And th d.c.’s of AR are, $\frac{{0 - a}}{{\sqrt 3 }},\frac{{a - 0}}{{\sqrt 3 }},\frac{{a - 0}}{{\sqrt 3 }}$.

i.e. $ - \frac{1}{{\sqrt 3 }}$, $\frac{1}{{\sqrt 3 }}$, $\frac{1}{{\sqrt 3 }}$.

Let θ be the angle between OP and AR.

Or, cosθ = a1.a2 + b1.b2 + c1.c2 = $\frac{1}{{\sqrt 3 }}\left( { - \frac{1}{{\sqrt 3 }}} \right) + \frac{1}{{\sqrt 3 }}.\frac{1}{{\sqrt 3 }}$ + $\frac{1}{{\sqrt 3 }}$.$\frac{1}{{\sqrt 3 }}$ = $\frac{1}{3}$

So, θ= cos-1$\left( {\frac{1}{3}} \right)$.

 

12. The projection of a line on the axes are 6, 2, 3. Find the length of the line and its direction cosines.

Solution:

Let PQ be a line joining P(x1,y1,z1) and Q(x2,y2,z2) whose d.c’s are $\frac{{{x_2} - {x_1}}}{{PQ}}$, $\frac{{{y_2} - {y_1}}}{{PQ}}$, $\frac{{{z_2} - {z_1}}}{{PQ}}$ and whose projection on the axes are 6,2,3.

So, projection of PQ on the x – axis is, x2 – x1 = 6.

projection of PQ on the y – axis is, y2 – y1 = 2.

projection of PQ on the z – axis is, z2 – z1 = 3.

Now, (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2 = 62 + 22 + 32

Or, PQ2 = 49

So, PQ = 7.

So, the dc’s are $\frac{{{x_2} - {x_1}}}{{PQ}}$, $\frac{{{y_2} - {y_1}}}{{PQ}}$, $\frac{{{z_2} - {z_1}}}{{PQ}} = $

i.e. $\frac{6}{7},\frac{2}{7}.\frac{3}{7}$.

Hence, length = 7 and d.c’s are $\frac{6}{7}$,$\frac{2}{7}$.$\frac{3}{7}$.

 

13. Find the projection of the join of the pair of points (3,-1, 2) and (5, -7, 4)

a. on the coordinate axes

Solution:

Given points are P(x1,y1,z1) = (3,-1,2) and P(x2,y2,z2) = (5,-7,4)

Projection of PQ on the x-axis = x2 – x1 =  5 – 3 = 2

Projection of PQ on the y – axis = y2 – y1 = - 7 + 1 = - 6

And projection of PQ on z  - axis = z2 – z1 = 4 – 2 = 2.

 

b. on a line whose direction cosines are proportional to 1, -1, 2

Solution:

The dc’s of a line AB whose dr’s are 1,-1,2 are

l = $\frac{1}{{\sqrt 6 }}$, m = $ - \frac{1}{{\sqrt 6 }}\: $, and n = $\frac{2}{{\sqrt 6 }}$.

So, projection of PQ on AB is l(x2 – x1) + m(y2 – y1) + n(z2 – z1)

= $\frac{1}{{\sqrt 6 }}$(5 – 3) + $\left( { - \frac{1}{{\sqrt 6 }}} \right)$(-7 + 1) + $\frac{2}{{\sqrt 6 }}$(4 – 2).

= $\frac{1}{{\sqrt 6 }}$(2 + 6 + 4) = $\frac{{12}}{{\sqrt 6 }}$ = 2$\sqrt 6 $.

 

c. on a line joining the points (0, 1, 0) and (1, 3, 7)

Solution:

The given points are A(0,1,0) and B(1,3,7).

So, dc’s of AB are $\frac{{1 - 0}}{{AB}}$, $\frac{{3 - 1}}{{AB}}$, $\frac{{7 - 9}}{{AB}}$, i.e. $\frac{1}{{\sqrt {54} }},\frac{2}{{\sqrt {54} }},\frac{7}{{\sqrt {54} }}$.

So, projection of PQ on AB is = l(x2 – x1) + m(y2 – y1) + n(z2 – z1)

= $\frac{1}{{\sqrt {54} }}$ (5 – 3) + $\frac{2}{{\sqrt {54} }}$(- 7 + 1) + $\frac{7}{{\sqrt {54} }}$(4 – 2).

= $\frac{2}{{\sqrt {54} }} - \frac{{12}}{{\sqrt {54} }}$ + $\frac{{14}}{{\sqrt {54} }}$ = $\frac{4}{{\sqrt {54} }}$.

 

14. a) A, B, C and D are four points with coordinates (2, 3, 1), (3, 2, 5), (-1, 2, 4) and (-1, 5, 7) respectively. Prove that the projection of AB on CD is equal to the projection of CD on AB. Also, show that the angle between them is $\frac{\pi }{3}$

Solution:

 

b) A(1, 2, 3) B(- 2, 2, 0) and C(3, 1, 1) are three points. Find the foot of the perpendicular drawn from A to the line BC.

Solution:

 

15. Find the direction cosines l, m, n of two lines which satisfy the equations

a. l + m + n = 0 and 2lm – mn + 2nl = 0

Solution:

Given relations are,

l + m + n = 0 → l = - (m + n) …(1)

and 2lm – mn + 2nl = 0 …(2)

or, -2m(m + n) – mn – 2n(m + n) = 0 [from(1)]

or,  2m2 + 5mn + 2n2 = 0

or, (2m + n)(m + 2n) = 0

So, 2m + n = 0 and  m + 2n = 0

So, 0,l + 2m + n = 0 …(3)

And 0.l + m + 2n = 0 …(4)

Now, from (1) and (2), we have,

So, $\frac{l}{1-2} = \frac{m}{0-1} = \frac{n}{2-0} \quad \rightarrow \quad \frac{l}{-1} = \frac{m}{-1} = \frac{n}{2} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+2m+n=0 \end{array} \right]$

Or, $\frac{l}{1} = \frac{m}{1} = \frac{n}{{ - 2}}$→ l = $\frac{1}{{\sqrt 6 }}$, m = $\frac{1}{{\sqrt 6 }}$, n = $ - \frac{2}{{\sqrt 6 }}$.

Again, from (1) and (4), we have,

Or, $\frac{l}{2-1} = \frac{m}{0-2} = \frac{n}{1-0} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+2m+n=0 \end{array} \right]$

Or, $\frac{l}{1} = \frac{m}{{ - 2}} = \frac{n}{1}$

So, l = $\frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }}, - \frac{2}{{\sqrt 6 }}$ and $\frac{1}{{\sqrt 6 }}, - \frac{2}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }}$.

Let θ be the angle between the lines. Then we have,

Cosθ = l1.l2 + m1.m2 + n1.n2 = $\frac{1}{{\sqrt 6 }}.\frac{1}{{\sqrt 6 }} - \frac{2}{{\sqrt 6 }}.\frac{1}{{\sqrt 6 }} + \frac{1}{{\sqrt 6 }}.\left( { - \frac{2}{{\sqrt 6 }}} \right)$

= $ - \frac{3}{6}$ = $ - \frac{1}{2}$

So, θ = 120°.

Note: The dc’s $\frac{1}{{\sqrt 6 }}, - \frac{2}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }}$ can be writeen as $ - \frac{1}{{\sqrt 6 }},\frac{2}{{\sqrt 6 }}, - \frac{1}{{\sqrt 6 }}$ then, we θ= 60°

b. 4l + 3m – 2n = 0 and lm – mn + nl = 0

Solution:

The given relations are:

4l + 3m – 2n = 0 ..(1)

i.e. n = $\frac{{4l + 3m}}{2}$

And lm – mn + nl = 0 ..(2)

Or, lm – m $\frac{{\left( {4l + 3m} \right)}}{2}$ + $\frac{{l\left( {4l + 3m} \right)}}{2}$ = 0    [from (1)]

Or, 2lm – 4lm – 3m2 + 4l2 + 3lm= 0.

Or, 4l2 + lm – 3m2 = 0

Or, 4l2 + 4lm – 3lm – 3m2 = 0

So, (4l – 3m)(l + m) = 0

So, 4l – 3m + 0.n = 0 …(3)

And l + m + 0.n = 0. …(4)

Now, from (1) and (3), we have,

Or, $\frac{l}{0-6} = \frac{m}{-8-0} = \frac{n}{-12-12} \quad \left[ \begin{array}{c} 4l+3m-2n=0 \\ 4l-3m+0n=0 \end{array} \right]$

So, $\frac{l}{{ - 3}} = \frac{m}{{ - 4}} = \frac{m}{{ - 12}}$→ l = $\frac{3}{{13}}$, m = $\frac{4}{{13}}$, n = $\frac{{12}}{{13}}$.

Again, from (1) and (4), we have,

Or, $\frac{l}{0+2} = \frac{m}{-2-0} = \frac{n}{4-3} \quad \left[ \begin{array}{c} 4l+3m-2n=0 \\ 4l+m+0.n=0 \end{array} \right]$

Or, $\frac{l}{2}$ = $\frac{m}{{ - 2}}$ = $\frac{n}{1}$.

So, l = $\frac{2}{3}$,m = $ - \frac{2}{3}$, n = $\frac{1}{3}$.

Hence, the dc’s $\frac{2}{3}$, $ - \frac{2}{3}$, $\frac{1}{3}$ and $\frac{3}{{13}}$, $\frac{4}{{13}}$, $\frac{{12}}{{13}}$.

Let θ be the angle between the lines. Then,

Cosθ = $\frac{2}{3}.\frac{3}{{13}}$ + $\left( { - \frac{2}{3}} \right)$.$\frac{4}{{13}}$ + $\frac{1}{3}$.$\frac{{12}}{{13}}$ = $\frac{{10}}{{39}}$.

So, θ= cos-1 $\left( {\frac{{10}}{{39}}} \right)$.

 

c. l + m + n = 0 and l2 + m2 – n2 = 0

Solution:

Given relations are:

l + m + n = 0….(i)

So, k = - m – n

And l2 + m2 – n2 = 0 ..(2)

Or, (-m-n)2 + m2 – n2 = 0   [from (1)]

Or, m2 + 2mn + n2 + m2 – n2 = 0

Or, 2m2 + 2mn = 0

Or, 2m(m + n) = 0

So, m = 0 …(3)

And, m + n = 0 ..(4)

Now, from (1) and (3), we have,

Or, l + m + n = 0 …(1)

Or, 0.l + m + 0.n = 0 …(3)

So, $\frac{l}{{0 - 1}} = \frac{m}{{0 - 0}} = \frac{n}{{1 - 0}}$→$\frac{l}{{ - 1}} = \frac{m}{0} = \frac{n}{1}$.

So, l = $ - \frac{1}{{\sqrt 2 }}$, m = 0 , n = $\frac{1}{{\sqrt 2 }}$.

Again from(1) and (4), we have,

Or, $\frac{l}{1-1} = \frac{m}{0-1} = \frac{n}{1-0} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+m+n=0 \end{array} \right]$

So, $\frac{l}{0}$ = $\frac{m}{{ - 1}}$ = $\frac{n}{1}$→ l = 0, m = $ - \frac{1}{{\sqrt 2 }}$, n = $\frac{1}{{\sqrt 2 }}$.

So, the dc’s are $ - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}$ and 0, $ - \frac{1}{{\sqrt 2 }}$,$\frac{1}{{\sqrt 2 }}$.

Let θ be the angle between the lines, Then,

Or, cosθ = l1l2 + m1.m2 + n1.n2 = 0 + 0 + $\frac{1}{2}$ = $\frac{1}{2}$.

So, θ= 60°.

 

16. a) A line makes a, ẞ, y, 8 with the four diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$

Solution:

 

b) Prove that the lines whose direction cosines are given by the relations pl + qm + rn = 0 and amn + bnl+ clm = 0 are perpendicular if $\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0$ and parallel if $\sqrt{ap} \pm \sqrt{bq} \pm \sqrt{cr} = 0$.

Solution: In the book Example Number 8

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.