Syllabus: Content to study
- Direction Cosine of a line
- Direction Cosine of Coordinate axis
- Direction cosines of the line through two given points
- Projection of a point on a line or plane
- Projection of a line segment on a line
- Direction Ratios
- Angle between two lines
Exercise 10.2
1. If a line makes an angle of $\frac{\pi }{3}$ and $\frac{\pi
}{4}$ with positive x-axis and z-axis respectively. Find the acute angle made
by the line with positive y-axis.
Solution:
α = $\frac{\pi }{3}$
, γ = $\frac{\pi }{4}$, β= ?
We have, cos2α + cos2β + cos2γ
= 1
Or, $\frac{1}{4}$ + $\frac{1}{2}$ + cos2γ = 1
Or, cos2γ = 1 – $\frac{3}{4}$ = $\frac{1}{4}$.
So, γ = $\frac{\pi }{3}$.
2. Show that the direction cosines of a line equally
inclined to the axes are ±$\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$, ±
$\frac{1}{{\sqrt 3 }}$
Solution:
Since, the line is equally inclined to the axes so let α be
the equal angle made by the line with the axes. So, it’s dc’s are, l = cosα, m
= cosα,n = cosα.
We have, l2 + m2 + n2 =
1
Or, cos2α + cos2α + cos2α =
1
Or, 3cos2α = 1
So, cosα = ± $\frac{1}{{\sqrt 3 }}$.
So, the required dc’s are cosα, cosα, cosα, i.e.
±$\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$, ± $\frac{1}{{\sqrt 3 }}$.
3. a) If a, ẞ and y are the angles which a line makes
with the coordinate axes, prove that sin2α + sin2β + sin2γ
= 2
Solution:
Since, α,β and γ are the angles made by a line with the
axes, so it’s dc’s are cosα, cosβ, cos γ.
We have, cos2α + cos2β + cos2 γ
= 1.
→1 – sin2α + 1 – sin2β + 1 – sin2γ
= 1.
So, sin2α + sin2β + sin2γ =
2.
b. If a, ẞ and y are the direction angles of a line,
prove that cos 2α + cos 2β + cos 2γ + = 0.
Solution:
Since, α, β and γ are the direction angles of a line so the
dc’s are l = cos α, m = cos β and n = cos γ.
We have, cos2α + cos2β + cos2γ
= 1 [l2 + m2 + n2 =
1]
Or, $\frac{{1 + cos2\alpha }}{2} + \frac{{1 + cos2\beta
}}{2} + \frac{{1 + cos2\gamma }}{2}$ = 1.
So, cos2α + cos2β + cos2γ = 2 – 3 = - 1.
Hence, cos 2α + cos 2β + cos 2γ + = 0.
4. Find the direction cosines of each of the lines whose
direction ratios are
a. -1,2,2
Solution:
The dr’s are – 1, 2 , 2.
Let 1,m,n be the dc’s
So, $\frac{l}{{ - 1}}$ = $\frac{m}{2}$ = $\frac{n}{2}$ =
$\frac{{\left( {\sqrt {{l^2} + {m^2} + {n^2}} } \right)}}{{\sqrt {1 + 4 + 4}
}}$ = $\frac{1}{3}$
So, l = $ - \frac{1}{3}$, m = $\frac{2}{3}$, n =
$\frac{2}{3}$.
b. 2,3,6.
Solution:
The dr’s are 2,3,6
Let l,m,n be the dc’s
So, $\frac{l}{2}$ = $\frac{m}{3}$ = $\frac{n}{6}$ =
$\frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {4 + 9 + 36} }}$ =
$\frac{1}{7}$.
So, l = $\frac{2}{7}$, m = $\frac{3}{7}$, n = $\frac{6}{7}$.
5. Find the direction cosines of the line passing through
the points
a. O(0,0,0) and P(2,3,4)
Solution:
Given points are O(0,0,0) and P(2,3,4).
So, OP = $\sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( {3
- 0} \right)}^2} + {{\left( {4 - 0} \right)}^2}} $ = $\sqrt {29} $.
So, the dc’s of OP are,
Or, $\frac{{{x_2} - {x_1}}}{{OP}}$, $\frac{{{y_2} -
{y_1}}}{{OP}}$, $\frac{{{z_2} - {z_1}}}{{OP}}$.
i.e. $\frac{2}{{\sqrt {29} }},\frac{3}{{\sqrt {29}
}},\frac{4}{{\sqrt {29} }}$.
b. P(2,3,4) and Q(1,4,6)
Solution:
Given points are P(2,3,4) and Q(1,4,6).
So, PQ = $\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {4
- 3} \right)}^2} + {{\left( {6 - 4} \right)}^2}} $ = $\sqrt {1 + 1 + 4} $ = $\sqrt
6 $.
So, the dc’s of PQ are,
Or, $\frac{{{x_2} - {x_1}}}{{PQ}},\frac{{{y_2} -
{y_1}}}{{PQ}},\frac{{{z_2} - {z_1}}}{{PQ}}$
i.e. $ - \frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6
}},\frac{2}{{\sqrt 6 }}$.
c. M(-1,2,-3) and N(4, - 1, 1)
Solution:
Given points are M(-1,2,-3) and N(4,-1,1)
So, MN = $\sqrt {{{\left( {4 + 1} \right)}^2} + {{\left( { -
1 - 2} \right)}^2} + {{\left( {1 + 3} \right)}^2}} $ = $\sqrt {50} $ = 5$\sqrt
2 $.
So, the d.c’s of MN are,
Or, $\frac{{{x_2} - {x_1}}}{{PQ}},\frac{{{y_2} -
{y_1}}}{{PQ}},\frac{{{z_2} - {z_1}}}{{PQ}}$
Ie. $\frac{5}{{5\sqrt 2 }}, - \frac{3}{{5\sqrt 2
}},\frac{4}{{5\sqrt 2 }}$.
6. Find the angle between the two lines whose direction
ratios are
a.1,2,4 and -2,1,5
Solution:
The dr’s are 1,2,4 and -2,1,5.
We have,
Cos θ = $\frac{{{a_1}.{a_2} + {b_1}.{b_2} +
{c_1}.{c_2}}}{{\sqrt {a_1^2 + b_2^2 + c_2^2} }}$ = $\frac{{1.\left( { - 2} \right)
+ 2.1 + 4.5}}{{\sqrt {\left( {1 + 4 + 16} \right)\left( {4 + 1 + 25} \right)}
}}$
Or, cosθ = $\frac{{20}}{{\sqrt {21*30} }}$ =
$\frac{{20}}{{3\sqrt {70} }}$.
So, θ = cos-1$\left( {\frac{{20}}{{3\sqrt {70}
}}} \right)$
b. 2, 3, 4 and 1, -2, 1
Solution:
cosθ = $\frac{{2*1 + 3x - 2 + 4*1}}{{\sqrt {\left( {4 + 9 +
16} \right)\left( {1 + 4 + 1} \right)} }}$ = $\frac{0}{{\sqrt {29*6} }}$ = 0.
So, θ= $\frac{\pi }{2}$.
c. 1, 2, 2 and 2, 3, 6
Solution:
cosθ = $\frac{{1.2 + 2.3 + 2.6}}{{\sqrt {\left( {1 + 4 + 4}
\right)\left( {4 + 9 + 36} \right)} }}$ = $\frac{{20}}{{\sqrt {9*49} }}$ =
$\frac{{20}}{{3*7}}$ = $\frac{{20}}{{21}}$.
So, θ= cos-1$\left( {\frac{{20}}{{21}}} \right)$.
7. Show that the line joining the points (1, 2, 3) and
(-1, -2, -3) is
Solution:
Given points are A(1,2,3) and B(-1,-2,-3)
So, dr’s of AB are x2 – x1,y2 –
y1, z2 – z1 i.e. 2,4,6
Now,
a. parallel to the line joining the points (2, 3, 4) and
(5, 9, 13)
Given points are C(2,3,4) and D(5,9,13).
So, dr’s of CD are 5 – 2,9 – 3,13 – 4, i.e. 3,6,9.
Since, $\frac{2}{3}$$\frac{4}{6}$ = $\frac{6}{9}$$\left[
{i.e\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} =
\frac{{{c_1}}}{{{c_2}}}} \right]$
So, AB is parallel to CD.
b. perpendicular to the line joining the points (-2, 1,
5) and (3, 3, 2)
Given points are E(-2,1,5) and F(3,3,2).
So, dr’s of EF are 3 + 2, 3 – 1, 2 – 5 , i.e. 5,2 – 3.
Thus, dr’s of AB are a1 = 2,b1 =
4,c1 = 6.
And the dr’s of EF are a2 = 5,b2 =
2,c2 = -3.
Now, a1.a2 + b1.b2 +
c1.c2 = 2.5 + 4.2 + 6.(-3) = 18 – 18 = 0.
So, a1.a2 + b1.b2 +
c1.c2 = 0
So, AB is perpendicular to EF.
8. a) For what value of k makes the line joining the
points (1, 2, k) and (5, 7, 15) perpendicular to the line joining the points
(4, 7, 1) and (3, 5, 3)?
Solution:
Given points are A(1,2,k), B(5,7,15), C(4,7,1) and D(3,5,3).
So, the dr’s of AB are 5 – 1, 7 – 2 , 15 – k, i.e. 4,5,15 –
k.
And the dr’s of CD are 3 – 4, 5 – 7, 3 – 1, i.e. – 1, - 2
,2.
Since, AB is perpendicular to CD, so a1a2 +
b1.b2 + c1.c2 = 0
Or, 4x – 1 + 5x – 2 + (15 – k)2 = 0
Or, - 14 + 30 – 2k = 0
So, k = 8.
b. For what value of k makes the line joining the points
(1, 2, k) and (4, 5, 6) parallel the line joining the points (-4, 3, -6) and
(2, 9, 2)?
Solution:
Given points are A(1,2,k), B(4,5,6), C(-4,3,-6) and
D(2,9,2).
So, the dr’s of AB are 4 – 1, 5 – 2, 6 – k, i.e. 3,3,6 – k.
And the dr’s of CD are 2 + 9, 9 – 3 , 2 + 6, i.e. 6,6,8.
Since, AB is parallel to CD if,
Or, $\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} =
\frac{{{c_1}}}{{{c_2}}}$
Ie. $\frac{3}{6} = \frac{3}{6} = \frac{{6 - k}}{8}$
Or, $\frac{{6 - k}}{8}$ = $\frac{1}{2}$→ 6 – k = 4.
So, k = 2.
9. If O is the origin and P(2, 3, 4) and Q(1, - 2, 1) be any
two points, show that OP is perpendicular to OQ.
Solution:
It is given that
Line joining O (0, 0, 0) and P (2, 3, 4) is written as
OP = 2i + 3j + 4k
Line joining O (0, 0, 0) and Q (1, -2, 1) is written as
OQ = i – 2j + k
In order prove that these two lines are perpendicular we
must show that angle between these two lines is π/2
Dot product
|OP||OQ| Cos θ = O where
Cos θ =0
OP. OQ=0
Substituting the values (2i + 3j + 4k). (i – 2j + k) = 2 – 6
+ 4 = 0 Therefore, it is proved that these two lines are perpendicular.
10. Find the direction cosines of the line which is
perpendicular to the lines with direction cosines proportional to 3,-1, 1 and
-3, 2, 4.
Solution:
Let l,m,n be the d.c’s of a line which is perpendicular to
the lines with dr’s 3,-1,-1 and – 3,2,4/
So, 3l – m + n = 0 [l1l2 +
m1.m2 + n1.n2 = 0]
And – 3l + 2m + 4n = 0
Or, $\frac{l}{{ - 4 - 2}} = \frac{m}{{ - 3 - 12}} =
\frac{n}{{6 - 3}}$
Or, $\frac{l}{2} = \frac{m}{5} = \frac{n}{{ - 1}}$ =
$\frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {4 + 25 + 1} }}$ =
$\frac{1}{{\sqrt {30} }}$.
So, the d.c’s l,m,n are $\frac{2}{{\sqrt {30} }}$,
$\frac{5}{{\sqrt {30} }}$, $ - \frac{1}{{\sqrt {30} }}$.
11. Show that the angle between two diagonals of a cube
is cos-1$\left( {\frac{1}{3}} \right)$
Solution:
Let 0(0,0,0) be the origin taken as one of the vertex of a
cube of side OA = OB = OC = a, whose two diagonals are OP and AR where A
(a,0,0) , R(0,a,a) and P(a,a,a). The cube is shown aside.
Now,
OP = $\sqrt {{{\left( {a - 0} \right)}^2} + {{\left( {a - 0}
\right)}^2} + {{\left( {a - 0} \right)}^2}} $ = a$\sqrt 3 $.
And AR = $\sqrt {{{\left( {0 - a} \right)}^2} + {{\left( {a
- 0} \right)}^2} + {{\left( {a - 0} \right)}^2}} $ = a$\sqrt 3 $.
So, the d.c’s of AR = $\frac{{a - 0}}{{a\sqrt 3 }}$,
$\frac{{a - 0}}{{a\sqrt 3 }}$, $\frac{{a - 0}}{{a\sqrt 3 }}$.
i.e. $\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3
}},\frac{1}{{\sqrt 3 }}$.
And th d.c.’s of AR are, $\frac{{0 - a}}{{\sqrt 3
}},\frac{{a - 0}}{{\sqrt 3 }},\frac{{a - 0}}{{\sqrt 3 }}$.
i.e. $ - \frac{1}{{\sqrt 3 }}$, $\frac{1}{{\sqrt 3 }}$,
$\frac{1}{{\sqrt 3 }}$.
Let θ be the angle between OP and AR.
Or, cosθ = a1.a2 + b1.b2 +
c1.c2 = $\frac{1}{{\sqrt 3 }}\left( { -
\frac{1}{{\sqrt 3 }}} \right) + \frac{1}{{\sqrt 3 }}.\frac{1}{{\sqrt 3 }}$ +
$\frac{1}{{\sqrt 3 }}$.$\frac{1}{{\sqrt 3 }}$ = $\frac{1}{3}$
So, θ= cos-1$\left( {\frac{1}{3}} \right)$.
12. The projection of a line on the axes are 6, 2, 3.
Find the length of the line and its direction cosines.
Solution:
Let PQ be a line joining P(x1,y1,z1)
and Q(x2,y2,z2) whose d.c’s are $\frac{{{x_2}
- {x_1}}}{{PQ}}$, $\frac{{{y_2} - {y_1}}}{{PQ}}$, $\frac{{{z_2} -
{z_1}}}{{PQ}}$ and whose projection on the axes are 6,2,3.
So, projection of PQ on the x – axis is, x2 –
x1 = 6.
projection of PQ on the y – axis is, y2 – y1 =
2.
projection of PQ on the z – axis is, z2 – z1 =
3.
Now, (x2 – x1)2 +
(y2 – y1)2 + (z2 – z1)2 =
62 + 22 + 32
Or, PQ2 = 49
So, PQ = 7.
So, the dc’s are $\frac{{{x_2} - {x_1}}}{{PQ}}$,
$\frac{{{y_2} - {y_1}}}{{PQ}}$, $\frac{{{z_2} - {z_1}}}{{PQ}} = $
i.e. $\frac{6}{7},\frac{2}{7}.\frac{3}{7}$.
Hence, length = 7 and d.c’s are
$\frac{6}{7}$,$\frac{2}{7}$.$\frac{3}{7}$.
13. Find the projection of the join of the pair of points
(3,-1, 2) and (5, -7, 4)
a. on the coordinate axes
Solution:
Given points are P(x1,y1,z1)
= (3,-1,2) and P(x2,y2,z2) = (5,-7,4)
Projection of PQ on the x-axis = x2 – x1 =
5 – 3 = 2
Projection of PQ on the y – axis = y2 – y1 =
- 7 + 1 = - 6
And projection of PQ on z - axis = z2 –
z1 = 4 – 2 = 2.
b. on a line whose direction cosines are proportional to
1, -1, 2
Solution:
The dc’s of a line AB whose dr’s are 1,-1,2 are
l = $\frac{1}{{\sqrt 6 }}$, m = $ - \frac{1}{{\sqrt 6 }}\:
$, and n = $\frac{2}{{\sqrt 6 }}$.
So, projection of PQ on AB is l(x2 – x1)
+ m(y2 – y1) + n(z2 – z1)
= $\frac{1}{{\sqrt 6 }}$(5 – 3) + $\left( { -
\frac{1}{{\sqrt 6 }}} \right)$(-7 + 1) + $\frac{2}{{\sqrt 6 }}$(4 – 2).
= $\frac{1}{{\sqrt 6 }}$(2 + 6 + 4) = $\frac{{12}}{{\sqrt 6
}}$ = 2$\sqrt 6 $.
c. on a line joining the points (0, 1, 0) and (1, 3, 7)
Solution:
The given points are A(0,1,0) and B(1,3,7).
So, dc’s of AB are $\frac{{1 - 0}}{{AB}}$, $\frac{{3 -
1}}{{AB}}$, $\frac{{7 - 9}}{{AB}}$, i.e. $\frac{1}{{\sqrt {54}
}},\frac{2}{{\sqrt {54} }},\frac{7}{{\sqrt {54} }}$.
So, projection of PQ on AB is = l(x2 – x1)
+ m(y2 – y1) + n(z2 – z1)
= $\frac{1}{{\sqrt {54} }}$ (5 – 3) + $\frac{2}{{\sqrt {54}
}}$(- 7 + 1) + $\frac{7}{{\sqrt {54} }}$(4 – 2).
= $\frac{2}{{\sqrt {54} }} - \frac{{12}}{{\sqrt {54} }}$ +
$\frac{{14}}{{\sqrt {54} }}$ = $\frac{4}{{\sqrt {54} }}$.
14. a) A, B, C and D are four points with coordinates (2,
3, 1), (3, 2, 5), (-1, 2, 4) and (-1, 5, 7) respectively. Prove that the
projection of AB on CD is equal to the projection of CD on AB. Also, show that
the angle between them is $\frac{\pi }{3}$
Solution:
b) A(1, 2, 3) B(- 2, 2, 0) and C(3, 1, 1) are three
points. Find the foot of the perpendicular drawn from A to the line BC.
Solution:
15. Find the direction cosines l, m, n of two lines which
satisfy the equations
a. l + m + n = 0 and 2lm – mn + 2nl = 0
Solution:
Given relations are,
l + m + n = 0 → l = - (m + n) …(1)
and 2lm – mn + 2nl = 0 …(2)
or, -2m(m + n) – mn – 2n(m + n) = 0 [from(1)]
or, 2m2 + 5mn + 2n2 =
0
or, (2m + n)(m + 2n) = 0
So, 2m + n = 0 and m + 2n = 0
So, 0,l + 2m + n = 0 …(3)
And 0.l + m + 2n = 0 …(4)
Now, from (1) and (2), we have,
So, $\frac{l}{1-2} = \frac{m}{0-1} = \frac{n}{2-0} \quad \rightarrow \quad \frac{l}{-1} = \frac{m}{-1} = \frac{n}{2} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+2m+n=0 \end{array} \right]$
Or, $\frac{l}{1} = \frac{m}{1} = \frac{n}{{ - 2}}$→ l =
$\frac{1}{{\sqrt 6 }}$, m = $\frac{1}{{\sqrt 6 }}$, n = $ - \frac{2}{{\sqrt 6
}}$.
Again, from (1) and (4), we have,
Or, $\frac{l}{2-1} = \frac{m}{0-2} = \frac{n}{1-0} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+2m+n=0 \end{array} \right]$
Or, $\frac{l}{1} = \frac{m}{{ - 2}} = \frac{n}{1}$
So, l = $\frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }}, -
\frac{2}{{\sqrt 6 }}$ and $\frac{1}{{\sqrt 6 }}, - \frac{2}{{\sqrt 6
}},\frac{1}{{\sqrt 6 }}$.
Let θ be the angle between the lines. Then we have,
Cosθ = l1.l2 + m1.m2 +
n1.n2 = $\frac{1}{{\sqrt 6 }}.\frac{1}{{\sqrt 6 }} -
\frac{2}{{\sqrt 6 }}.\frac{1}{{\sqrt 6 }} + \frac{1}{{\sqrt 6 }}.\left( { -
\frac{2}{{\sqrt 6 }}} \right)$
= $ - \frac{3}{6}$ = $ - \frac{1}{2}$
So, θ = 120°.
Note: The dc’s $\frac{1}{{\sqrt 6 }}, - \frac{2}{{\sqrt 6
}},\frac{1}{{\sqrt 6 }}$ can be writeen as $ - \frac{1}{{\sqrt 6
}},\frac{2}{{\sqrt 6 }}, - \frac{1}{{\sqrt 6 }}$ then, we θ= 60°
b. 4l + 3m – 2n = 0 and lm – mn + nl = 0
Solution:
The given relations are:
4l + 3m – 2n = 0 ..(1)
i.e. n = $\frac{{4l + 3m}}{2}$
And lm – mn + nl = 0 ..(2)
Or, lm – m $\frac{{\left( {4l + 3m} \right)}}{2}$ +
$\frac{{l\left( {4l + 3m} \right)}}{2}$ = 0 [from (1)]
Or, 2lm – 4lm – 3m2 + 4l2 +
3lm= 0.
Or, 4l2 + lm – 3m2 = 0
Or, 4l2 + 4lm – 3lm – 3m2 =
0
So, (4l – 3m)(l + m) = 0
So, 4l – 3m + 0.n = 0 …(3)
And l + m + 0.n = 0. …(4)
Now, from (1) and (3), we have,
Or, $\frac{l}{0-6} = \frac{m}{-8-0} = \frac{n}{-12-12} \quad \left[ \begin{array}{c} 4l+3m-2n=0 \\ 4l-3m+0n=0 \end{array} \right]$
So, $\frac{l}{{ - 3}} = \frac{m}{{ - 4}} = \frac{m}{{ -
12}}$→ l = $\frac{3}{{13}}$, m = $\frac{4}{{13}}$, n = $\frac{{12}}{{13}}$.
Again, from (1) and (4), we have,
Or, $\frac{l}{0+2} = \frac{m}{-2-0} = \frac{n}{4-3} \quad \left[ \begin{array}{c} 4l+3m-2n=0 \\ 4l+m+0.n=0 \end{array} \right]$
Or, $\frac{l}{2}$ = $\frac{m}{{ - 2}}$ = $\frac{n}{1}$.
So, l = $\frac{2}{3}$,m = $ - \frac{2}{3}$, n =
$\frac{1}{3}$.
Hence, the dc’s $\frac{2}{3}$, $ - \frac{2}{3}$,
$\frac{1}{3}$ and $\frac{3}{{13}}$, $\frac{4}{{13}}$, $\frac{{12}}{{13}}$.
Let θ be the angle between the lines. Then,
Cosθ = $\frac{2}{3}.\frac{3}{{13}}$ + $\left( { -
\frac{2}{3}} \right)$.$\frac{4}{{13}}$ + $\frac{1}{3}$.$\frac{{12}}{{13}}$ =
$\frac{{10}}{{39}}$.
So, θ= cos-1 $\left( {\frac{{10}}{{39}}}
\right)$.
c. l + m + n = 0 and l2 + m2 –
n2 = 0
Solution:
Given relations are:
l + m + n = 0….(i)
So, k = - m – n
And l2 + m2 – n2 =
0 ..(2)
Or, (-m-n)2 + m2 – n2 =
0 [from (1)]
Or, m2 + 2mn + n2 + m2 –
n2 = 0
Or, 2m2 + 2mn = 0
Or, 2m(m + n) = 0
So, m = 0 …(3)
And, m + n = 0 ..(4)
Now, from (1) and (3), we have,
Or, l + m + n = 0 …(1)
Or, 0.l + m + 0.n = 0 …(3)
So, $\frac{l}{{0 - 1}} = \frac{m}{{0 - 0}} = \frac{n}{{1 -
0}}$→$\frac{l}{{ - 1}} = \frac{m}{0} = \frac{n}{1}$.
So, l = $ - \frac{1}{{\sqrt 2 }}$, m = 0 , n =
$\frac{1}{{\sqrt 2 }}$.
Again from(1) and (4), we have,
Or, $\frac{l}{1-1} = \frac{m}{0-1} = \frac{n}{1-0} \quad \left[ \begin{array}{c} l+m+n=0 \\ 0.l+m+n=0 \end{array} \right]$
So, $\frac{l}{0}$ = $\frac{m}{{ - 1}}$ = $\frac{n}{1}$→ l =
0, m = $ - \frac{1}{{\sqrt 2 }}$, n = $\frac{1}{{\sqrt 2 }}$.
So, the dc’s are $ - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt
2 }}$ and 0, $ - \frac{1}{{\sqrt 2 }}$,$\frac{1}{{\sqrt 2 }}$.
Let θ be the angle between the lines, Then,
Or, cosθ = l1l2 + m1.m2 +
n1.n2 = 0 + 0 + $\frac{1}{2}$ = $\frac{1}{2}$.
So, θ= 60°.
16. a) A line makes a, ẞ, y, 8 with the four diagonals of a
cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta
= \frac{4}{3}$
Solution:
b) Prove that the lines whose direction cosines are given by
the relations pl + qm + rn = 0 and amn + bnl+ clm = 0 are perpendicular if $\frac{a}{p}
+ \frac{b}{q} + \frac{c}{r} = 0$ and parallel if $\sqrt{ap} \pm \sqrt{bq} \pm
\sqrt{cr} = 0$.
Solution: In the book Example Number 8