Application of Derivatives Exercise: 16.4 Class 12 Basic Mathematics Solution [NEB UPDATED]

Syllabus: Content to study

  1. Rolle's Theorem
  2. Geometrical Interpretation of Rolle's Theorem
  3. Lagrange's Mean Value Theorem
Application of Derivatives Exercise: 16.4 Class 12 Basic Mathematics Solution [NEB UPDATED]

Exercise 16.4

1. Verify Rolle’s theorem for the following functions:

a. f(x) = 3x2 – 4 in [-1,1]

Solution:

Since, f(x) = 3x2 – 4, is a polynomial function, it is continuous in [-1,1].

And, f’(x) = 6x, exists for all x in (-1,1).

So, f(x) is differentiable in (-1,1).

Again, f(-1) = 3(-1)2 – 4 = 3 – 4 = -1.

And f(1) = 3(1)2 – 4 = 3 – 4 = -1

So, f(-1) = f(1)

Hence, f(x) satisfies all conditions of Rolle’s theorem so there exists a C in (-1,1) such that f’(C) = 0 6C C = 0.

Hence, C = 0 ԑ (-1,1), and Rolle’s theorem is verified.

b. f(x) = 2x2 – 3x + 1 in $\left[ {\frac{1}{2},1} \right]$

Solution:

Since, f(x) = 2x2 – 3x + 1 is a polynomial function, so it is continuous in $\left[ {\frac{1}{2},1} \right]$.

And f’(x) = 4x – 3 exists for all x in $\left( {\frac{1}{2},1} \right)$.

Again,f$\left( {\frac{1}{2}} \right)$ = 2.${\left( {\frac{1}{2}} \right)^2}$ = 3.$\frac{1}{2}$ + 1 = $\frac{{1 - 3 + 2}}{2}$ = $\frac{0}{2}$ = 0.

And f(1) = 2.12 – 3.1 + 1 = 2 – 3 + 1 = 0.

So, ${\rm{f}}\left( {\frac{1}{2}} \right)$ = f(1).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( {\frac{1}{2},1} \right)$, such that f’(C) = 0.

Or, 4C – 3 = 0 C = $\frac{3}{4}$ ԑ $\left( {\frac{1}{2},1} \right)$ so the Rolle’s theorem is verified.

c. f(x) = (x + 1)(x – 2) in [-1,2]

Solution:

Since, f(x) = (x + 1)(x – 2) = x2 – x – 2 is a polynomial function, so it is continuous in $\left[ { - 1,2} \right]$.

And f’(x) = 2x – 1 exists for all x in $\left( { - 1,2} \right)$. Thus, f(x) is differentiable in (-1,2).

Again,f$\left( { - 1} \right)$ = (-1)2 – (-1) – 2 = 0.

And f(2) = 22 – 2 – 2 = 0.

So, f(-1) = f(2).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( { - 1,2} \right)$, such that

f’(C) = 0 2C – 1 = 0.

So, C = $\frac{1}{2}$ ԑ (-1,2).

Hence, Rolle’s theorem is verified.

d. f(x) = x(x – 1)in [0,1]

Solution:

Since f(x) = x(x – 1)is a polynomial function, so it is continuous in $\left[ {0,1} \right]$.

And f’(x) = 1.(x – 1)2 + x.2(x – 1)

Or, f’(x) = x2 – 2x + 1 + 2x2 – 2x = 3x2 – 4x + 1.

Thus, f(x) is differentiable in $\left({0,1} \right)$.

Again,f$\left( 0 \right)$ = 0.

And f(1) = 0

So, f(0) = f(1).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( {0,1} \right)$, such that

f’(C) = 0 3C2 – 4C + 1 = 0

So, C = 1, $\frac{1}{3}$ where 1 (0,1) but $\frac{1}{3}$ԑ (0,1)

Hence, Rolle’s theorem is verified.

e. f(x) = (x – 1)(x – 2)(x – 3) in [1,3]

Solution:

Since, f(x) = (x – 1)(x – 2)(x – 3) = x3 – 3x2 + 11x – 6is a polynomial function, so it is continuous in $\left[ {1,3} \right]$.

And f’(x) = 3x2 – 12x + 11, exists for all x in (1,3).

Thus, f(x) is differentiable in $\left( {1,3} \right)$.

Again,f$\left( 1 \right)$ = 0.

And f(3) = 0

So, f(1) = f(3).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( {1,3} \right)$, such that

f’(C) = 0 3C2 – 12C + 11 = 0

So, C = $\frac{{4 \pm \sqrt 3 }}{3}$ where C = $\frac{{4 - \sqrt 3 }}{3}$ does not belong to (1,3) but C = $\frac{{4 + \sqrt 3 }}{4}$ ԑ (1,3).

Hence, Rolle’s theorem is verified.

f. f(x) = sinx in $\left[ {0,{\rm{\pi }}} \right]$

Solution:

Since, f(x) = sinx is continuous in $\left[ {0,{\rm{\pi }}} \right]$.

And f’(x) = cosx, exists for all x ԑ [0,π]

Thus, f(x) is differentiable in $\left( {0,{\rm{\pi }}} \right)$.

Also, f(0) = sin 0 = 0

Again,f$\left( {\rm{\pi }} \right)$ = sinπ = 0.

So, f(0) = f(π).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( {0,{\rm{\pi }}} \right)$, such that

f’(C) = 0 ,cosC = 0. C = $\frac{{\rm{\pi }}}{2}$ ԑ (0,π).

Hence, Rolle’s theorem is verified.

g. f(x) = cos2x in $\left[ {--{\rm{\pi }},{\rm{\pi }}} \right]$

Solution:

Since, f(x) = cos2x is continuous in $\left[ {--{\rm{\pi }},{\rm{\pi }}} \right]$.

And f’(x) = -2sin2x, exists for all x in (-π,π).

Also,f$\left( { - {\rm{\pi }}} \right)$ = cos(-2π) = 1.

And f(π) = cos2π = 1.

So, f(2π) = f(-2π).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( {--{\rm{\pi }},{\rm{\pi }}} \right)$, such that

f’(C) = 0

So, -2sin2C = 0 sin2C = 0 C = 0.

Thus, C = 0 ԑ (-π,π)

Hence, Rolle’s theorem is verified.

h. f(x) = $\sqrt {25 - {{\rm{x}}^2}} $ in $\left[ {--5,5} \right]$

Solution:

Since, f(x) = $\sqrt {25 - {{\rm{x}}^2}} $is continuous in $\left[ {--5,5} \right]$.

And f’(x) = $ - \frac{{\rm{x}}}{{\sqrt {25 - {{\rm{x}}^2}} }}$, exists for all x in (-5,5).

Also,f$\left( { - 5} \right)$ = 0

And f(5) = 0

So, f(-5) = f(5).

Hence, f(x) satisfies the condition of Rolle’s theorem so there exists C in $\left( { - 5,5} \right)$, such that

f’(C) = 0

So, $ - \frac{{\rm{C}}}{{\sqrt {25 - {{\rm{C}}^2}} }}$ = 0 C = 0 ԑ(-5,5).

Hence, Rolle’s theorem is verified.


2. Using Rolle’s theorem, find a point on each of the curves represented by the following function, where the tangent is parallel to the x-axis. 

a. f(x) = x2 – 1 in [-2,2]

Solution:

Since f(x) = x2 – 1 is continuous on [-2,2] and differential in (-2,2)

Also, f(-2) = f(2) = 3, so f(x) satisfies all conditions of Rolle’s theorem so there exists a C ԑ (-2,2) at which the tangent is parallel to x – axis, such that, f’(C) = 0 2C = 0 C = 0 i.e. x = 0.

When x = 0 then y = f(0) = 02 – 1 = - 1.

Hence, the required point is (0,-1).

b. f(x) = 6x – x2 in [0,6]

Since f(x) = 6x – x2 is continuous on [0,6] and f’(x) = 6 – 2x exists in (0,6) and f(0) = f(6) = 0, so f(x) satisfies all conditions of Rolle’s theorem so there exists a x ԑ (0,6) at which the tangent is parallel to x-axis,

So, f’(x) = 0

6 – 2x = 0 x = 3 ԑ (0,6)

For x = 3, y = f(3) = 6.3 – 32 = 9.

So, the required point is (3,9).

c. f(x) = sinx x, ԑ (0,π)

Since f(x) = sinx is continuous on [0,π] and f’(x) exists in (0,π) and f(0) = f(π) = 0, so f(x) satisfies all conditions of Rolle’s theorem so there exists a x ԑ (0,π) at which the tangent is parallel to x-axis,

So, f’(x) = 0

cosx = 0 x = $\frac{{\rm{\pi }}}{2}$ ԑ (0,π].

So, y = f$\left( {\frac{{\rm{\pi }}}{2}} \right)$ = sin $\frac{{\rm{\pi }}}{2}$ = 1.

So, required point is ($\frac{{\rm{\pi }}}{2}$,1).


3. Verify Lagrange’s mean value theorem for the following functions:

a. f(x) = 3x2 – 2x in [1,3]

Solution:

Since f(x) = 3x2 – 2x is continuous [1,3] and f’(x) = 6x – 2 exists on (1,3) so there exists a C in (1,3) such that,

Or, f’(C) = $\frac{{{\rm{f}}\left( 3 \right) - {\rm{f}}\left( 1 \right)}}{{3 - 1}}$$\left[ {{\rm{f}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$

Or, 6C – 2 = $\frac{{\left( {{{3.3}^2} - 2.3} \right) - \left( {{{3.1}^2} - 2.1} \right)}}{{3 - 1}}$   [a = 1,b = 3]

Or, 12C – 4 = 21 – 1 = 20.

So, C = $\frac{{24}}{{12}}$ = 2 ԑ (1,3).

Hence, the mean value theorem is verified.

b. f(x) = x2 – 2x + 4 in [1,5]

Solution:

Since f(x) = x2 – 2x + 4 is continuous [1,5] and f’(x) = 2x – 2 exists on (1,5) so there exists    $\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$

Or, 2C – 2 = $\frac{{\left( {5 - 2.5 + 4} \right) - \left( {{1^2} - 2.1 + 4} \right)}}{{5 - 1}}$   [a = 1,b = 5]

Or, 8C – 8 = 19 – 3 = 16.

So, C – 1 = 2

So, C = 3 ԑ (1,5)

Hence, the mean value theorem is verified.

c. f(x) = 2x2 – 10x + 29 in [2,7]

Solution:

Since f(x) = 2x2 – 10x + 29 is continuous [2,7] and f’(x) = 4x – 10 exists on (2,7) so there exists a C in (2,7) such that,

$\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$ = $\frac{{{\rm{f}}\left( 7 \right) - {\rm{f}}\left( 2 \right)}}{{7 - 2}}$

Or, 4C – 10 = $\frac{{({{2.7}^2} - 10.7 + 29( - \left( {{{2.2}^2} - 10.2 + 29} \right)}}{5}$

Or, 20C – 50 = 98 – 70 + 29 – 8 + 20 – 29

Or, 20C – 50 = 40

So, C = $\frac{9}{2}$ ԑ (2,7).

Hence, the mean value theorem is verified.

d. f(x) = x3 + x2 – 6x  in [-1,4]

Solution:

Since f(x) = x3 + x2 – 6x  is continuous [-1,4] and f’(x) = 3x2 + 2x – 6  exists for all x in (-1,4) so there exists a C in (-1,4) such that,

$\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$ = $\frac{{{\rm{f}}\left( 4 \right) - {\rm{f}}\left( 1 \right)}}{{4 - 1}}$

Or, 3C2 + 2C – 6 = $\frac{{\left( {{4^3} + {4^2} - 6.4} \right) - \left\{ {{{\left( { - 1} \right)}^3} + {{\left( { - 1} \right)}^2} - 6\left( { - 1} \right)} \right\}}}{5}$.

Or, 3C2 + 2C – 6 = $\frac{{56 - 6}}{5}$ = $\frac{{50}}{5}$ = 10.

Or, 3C2 + 2C – 16 = 0

So, C = $\frac{{ - 2 \pm \sqrt {4 - 4.3\left( { - 16} \right)} }}{{2.3}}$ = $\frac{{ - 2 \pm \sqrt {196} }}{6}$.

So, C = 2 ԑ (-1,4).  [but $ - \frac{8}{3}$ (-1,4)]

Hence, the mean value theorem is verified for C = 2.

e. f(x) = x(x – 1)2 = x3 – 2x2 + x in [0,2]

Solution:

Since f(x) = x(x – 1)2 = x3 – 2x2 + x is continuous [0,2] and f’(x) = 3x2 – 4x + 1  exists for all x in (0,2) so from the mean value theorem there exists a C in (0,2) such that,

$\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$ = $\frac{{{\rm{f}}\left( 2 \right) - {\rm{f}}\left( 0 \right)}}{{2 - 0}}$

Or, 3C2 – 4C + 1 = $\frac{{2.{{\left( {2 - 1} \right)}^2} - 0}}{2}$ = $\frac{2}{2}$ = 1.

Or, 3C2 – 4C = 0.

So, C = 0 (0,2).  [but ${\rm{C}} = \frac{4}{3}$ ԑ (0,2)]

Hence, the mean value theorem is verified for C = $\frac{4}{3}$.

f. f(x) = $\sqrt {{{\rm{x}}^2} + 4} $, x ԑ [2,4]

Solution:

Since f(x) = $\sqrt {{{\rm{x}}^2} + 4} $ is continuous [2,4] and f’(x) = $\frac{{\rm{x}}}{{\sqrt {{{\rm{x}}^2} - 4} }}$ exists for all x in (2,4) so from the mean value theorem there exists a C in (2,4) such that,

$\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$ = $\frac{{{\rm{f}}\left( 4 \right) - {\rm{f}}\left( 2 \right)}}{{4 - 2}}$

Or,$\frac{{\rm{C}}}{{\sqrt {{{\rm{C}}^2} - 4} }}$ = $\frac{{\sqrt {16 - 4}  - \sqrt {4 - 4} }}{{4 - 2}}$ = $\frac{{2\sqrt 3 }}{2}$ = $\sqrt 3 $.

Or, C = $\sqrt {3\left( {{{\rm{C}}^2} - 4} \right)} $.

Or, C2 = 3C2 – 12

Or, C = ±$\sqrt 6 $.

So, C = $\sqrt 6 $ ԑ (2,4). 

Hence, the mean value theorem is verified.

g. f(x) = ${{\rm{e}}^{\rm{x}}}$, x ԑ [0,1]

Solution:

Since f(x) = ${{\rm{e}}^{\rm{x}}}$ is continuous on [0,1] and f’(x) = ${{\rm{e}}^{\rm{x}}}$ exists for all x in (0,1) so that there exists a C in (0,1) such that,

$\left[ {{\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}} \right]$ = $\frac{{{\rm{f}}\left( 1 \right) - {\rm{f}}\left( 0 \right)}}{{1 - 0}}$

Or, eC = $\frac{{{\rm{e}} - 1}}{1}$ eC = e – 1.

So, C = log(e – 1) ԑ (0,1)

Hence, the mean value theorem is verified. 


4. a) Using Lagrange’s Mean Value theorem, find the point on the curve f(x) = x(x – 2), the tangents at which is parallel to the chord joining the points (1,-1) and (4,8).

Solution:

Since x ranges from 1 to 4 so f(x) = x(x – 2) = x2 – 2x, x ԑ [1,4] is continuous in [1,4] and f’(x) = 2x – 2 exists for all x in (1,4) so there exists a C in (1,4) such that,

Or, ${\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}$ = $\frac{{{\rm{f}}\left( 4 \right) - {\rm{f}}\left( 1 \right)}}{{4 - 1}}$.

Or, 2C – 2 = $\frac{{4\left( {4 - 2} \right) - 1\left( {1 - 2} \right)}}{3}$ = $\frac{{8 + 1}}{3}$ = 3.

So, C’ = $\frac{5}{2}$ ԑ(1,4).

Thus, C = $\frac{5}{2}$ is the abscissa of the point at which the tangent drawn is parallel to the chord joining the point (1,-1) and (4,8). Not put x = $\frac{5}{2}$ in y = f(x) = x(x – 2).

We have, y = $\frac{5}{2}\left( {\frac{5}{2} - 2} \right)$ = $\frac{5}{2}.\frac{1}{2}$ = $\frac{5}{4}$.

So, the required point is $\left( {\frac{5}{2},\frac{5}{4}} \right)$.

b. Examine whether the function f(x) = x2 – 6x + 1 satisfies Lagrange’s mean value theorem. If it satisfies find the coordinates of the points at which the tangent is parallel to the chord joining points A91,-4) and B(3,-8).

Solution:

Since x ranges from 1 to 3 so f(x) = x2 – 6x + 1, satisfies all the conditions of the mean value theorem  in [1,3],so there exists a C in (1,3) such that,

Or, ${\rm{f'}}\left( {\rm{C}} \right) = \frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( {\rm{a}} \right)}}{{{\rm{b}} - {\rm{a}}}}$ = $\frac{{{\rm{f}}\left( 3 \right) - {\rm{f}}\left( 1 \right)}}{{3 - 1}}$.

Or, 2C – 6 = $\frac{{\left( {{3^2} - 6.3 + 1} \right) - \left( {{1^2} - 6.1 + 1} \right)}}{2}$ = $\frac{{ - 8 + 4}}{2}$ = -2.

So, C = 2 ԑ (1,3).

Thus, C = 2 is the abscissa of the point at which the tangent drawn is parallel to the chord joining the point to the chord joining the points A(1,-4) and B(4,8).

 Thus, putting x = 2 in y = x2 – 6x + 1.

We have, y = 22 – 6.2 + 1 = -7.

So, the required point is (2,-7).

 

5. Show that Rolle’s theorem can not be applied to the function.

Solution:

f(x) = 1 – x2/3 f(x) = 1 – $\frac{2}{3}$.$\frac{1}{{{{\rm{x}}^{\frac{1}{3}}}}}$.

Which does not exist at x = 0 ԑ (-1,1)

So, Rolle’s theorem cannot be applied.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.