Question: A certain
simple pendulum has a period on the earth of 1.60 s. What is its period on the
surface of Mars, where g = 3.71 m/s2?
Solution:
Given:
Time period on the earth surface of the pendulum (Te)=1.60
Seconds
Acceleration due to gravity on Mars (gm)=3.71m/s2
We Know
$T = 2\pi \sqrt {\frac{l}{g}} $.............(i)
Now,
Time period for earth (Te)= $2\pi \sqrt
{\frac{l}{{{g_e}}}} $.............(ii)
Time period for Mars (Tm)= $2\pi \sqrt {\frac{l}{{{g_m}}}} $.............(iii)
From Equation (ii) and (iii), We Get:
$\begin{array}{l}\frac{{{T_m}}}{{{T_e}}} = \sqrt
{\frac{{{g_e}}}{{{g_m}}}} \\or,{\rm{ }}{T_m} = {T_e}\sqrt
{\frac{{{g_e}}}{{{g_m}}}} \\\therefore {T_m} = 1.6 \times \sqrt
{\frac{{9.8}}{{3.71}}} = 2.6s\end{array}$
Thus, Time Period on the Mars Surface is 2.6Seconds