Relation, Function and Graphs Exercise: 2.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Table of Contents

Exercise 2.1

1) Identify which of the following pairs are equal.

Solution:

Here,

a. (1, 3) and (3, 1) are unequal i.e. (1, 3) ≠ (3, 1). 

b. (a, b) and (a, b) are equal i.e. (a, b) = (a, b). 

c. (1, a) and (1, x) are unequal i.e. (1, a) ≠ (1, x). 

d. (x, x) and (y, y) are unequal i.e. (x, x) ≠ (y, y).

 

2) Find x and y, if

Solution:

a) (x + y, 3) = (1, x – y)

(x + y, 3) = (1, x – y)

So, x + y = 1 …(i)

And, x – y = 3 …(ii)

Adding (i) and (ii) we get,

2x = 4

So, x = 2

Putting x= 2 in (i) we get,

2 + y = 1

So, y = –1.

Hence, (x, y) = (2, –1) 

b) (x + 2y, 3) = (–1, 2x – y)

(x + 2y, 3) = (–1, 2x – y)

So, x + 2y = –1 …(i)

And 2x – y = 3

So, 4x – 2y = 6 …(ii)          [multiplication by 2]

Adding (i) and (ii) we have,

5x = 5

So, x = 1

So, Putting x = 1 in (i) we get,

1 + 2y = –1

Or, 2y = –2

So, y = –1

Hence, x = 1, y = –1.

c) (x – 2, y + 1) = (1, 0)

(x – 2, y + 1) = (1, 0)

So, x – 2 = 1

So, x = 3

And y + 1 = 0

So, y = –1

Hence, x = 3 and y = –1. 

d) (2x – 1, –3) = (1, y + 3)

(2x – 1, –3) = (1, y + 3)

So, 2x – 1 = 1

Or, 2x = 2

So, x =1.

And y + 3 = –3

So, y = –6

Hence, x = 1 and y = –6.

 

3) If A = {1, 2, 3} and B = {a, b}, find A x A, B x B and B x A.

Solution:

A = {1, 2, 3} and B = {a, b}

So, A x  A = {1, 2, 3} x {1, 2, 3}

= {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

Or, B x B = {a, b} x {a, b} = {(a, a), (a, b), (b, a), (b, b)}

And B x A = {a, b) x {1, 2, 3}

= {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

 

4) Let A = {a, b}, B = {b, c}, C = {c, d}. Find:

Solution:

A = {a, b}, B = {b, c}, C = {c, d}

Now,

a) A x  (BUC)

BUC = {b, c} U {c, d} = {b, c, d}

So, A x  (BUC) = {a, b} x  {b, c, d} = {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d)} 

b) A x  (B∩C)

B ∩ C = {b, c) ∩ {c, d} = {c}

So, A x  (B∩C) = {a, b} x {c} = {(a, c), (b, c)} 

c) (A x B) U (A x C)

A x B = {a, b} x  {b, c} = {(a, b), (a, c), (b, b), (b, c)}

A x C = {a, b} x {c, d} = {(a, c), (a, d), (b, c), (b, d)}

So, (A x B) U (A x C) = {(a, b), (a, c), (b, b), (b, c)} U {(a, c), (a, d), (b, c), (b, d)}

= {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d)}

d) (A x  B) ∩ (A x  C)

(A x  B) ∩ (A x  C) = {(a, b), (a, c), (b, b), (b, c)} ∩ {(a, c), (a, d), (b, c), (b, d)}

= {(a, c), (b, c)}

 

5) Let A = {a, b}, B = {c, d} and C = {d, e}. Verify that

Solution:

A = {a, b}, B = {c, d}, C = {d, e}

Now, B U C = {c, d} U {d, e} = {c, d, e}

Now, B ∩ C = {c, d} ∩ {d, e} = {d}

A x  B = {a, b} x  {c, d} = {(a, c), (a, d), (b, c), (b, d)}

A x  C = {a, b} x  {d, e} = {(a, d), (a, e), (b, d), (b, e)}

Now,

a) A x (B U C) = (A x  B) U (A x C)

A x (B U C) = {a, b} x  {c, d, e}

= {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}

And (A x  B) U (A x  C) = {(a, c), (a, d), (b, c), (b, d)} U {(a, d), (a, e), (b, d), (b, e)}

= {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}

Hence, A x  (B U C) = (A x  B) U (A x C). Verified. 

b) A x  (B ∩ C) = (A x  B) ∩ (A x C)

A x  (B ∩ C) = {a, b} ∩ {d}

= {(a, d), (b, d)}

And (A x  B) ∩ (A x  C) = {(a, c), (a, d), (b, c), (b, d)} ∩ {(a, d), (a, e), (b, d), (b, e)}

= {(a, d), (b, d)}

Hence, A x  (B ∩ C) = (A x  B) ∩ (A x C). Verified.

 

6) Find the Cartesian product A xB of the following sets:

Solution:

a) A = {x:x = 1, 2, 3} = {1, 2, 3}, B = {y:y = 3 – x} = {0, 1, 2}

A = {x:x = 1, 2, 3} = {1, 2, 3}

And B = {y:y = 3 – x} = {0, 1, 2}

Now, A x B = {1, 2, 3} x {0, 1, 2}

So, A x B = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}

b) A = {x:x = 0, 1, 2} = {0, 1, 2}, B = {y:y = x2} = {0, 1, 4}

A = {x:x = 0, 1, 2} = {0, 1, 2}

B = {y:y = x2} = {0, 1, 4}

Now, A x B = {0, 1, 2} x {0, 1, 4}

So, A x B = {(0, 0), (0, 1), (0, 4), (1, 0), (1, 1), (1, 4), (2, 0), (2, 1), (2, 4)}

 

7. a) Let A= {1,2,3,4} and B={1,3,5}. Find the relation R from set A to set B determined by the condition.

Solution:

Here, A x B = {1, 2, 3, 4} x {1, 3, 5}

So, A x B = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)}

Now,

i) x>y

R = {(x, y): x>y}

So, R = {(2, 1), (3, 1), (4, 1), (4, 3)} 

ii) x < y

 R = {(x, y): x < y}

= {(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 5), (4, 5)} 

iii) y = x2

R = {(x, y) : y = x2} = {(1, 1)} 

b. Let A = {1, 2, 3, 4}. Find the relation on A satisfying the condition

Here, A = {1, 2, 3, 4}

So, A x A = {1, 2, 3, 4} x {1, 2, 3, 4}

So, A x A = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}

Now,

i) y = 2x

R = {(x, y) : y = 2x}

So, R = {(1, 2), (2, 4)} 

ii) x + y = 6

R = {(x, y): x + y = 6}

So, R ={(2, 4), (3, 3), (4, 2)} 

iii) x + y ≤ 4

R = {(x, y): x + y ≤ 4}

So, R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)} 

iv) x – y ≥ 1

R = {(x, y): x – y ≥ 1}

So, R = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}

 

8. a) R1={(1,2),(2,3),(3,4),(4,5)}

Solution: here,

So, D(R1) = {1, 2, 3, 4}

R(R1) = {2, 3, 4, 5}

And R1–1 = {(2, 1), (3, 2), (4, 3), (5, 4)} 

b) R2={(1,3),(2,5),(3,7),(4,9)}

Solution:

So, D(R2) = {1, 2, 3, 4}

R(R2) = {3, 5, 7, 9}

And R2–1 = {(3, 1), (5, 2), (7, 3), (9, 4)} 

c) R3={(a,b),(b,a),(b,c),(c,b),(c,a),(a,c)}

Solution:

So, D(R3) = {a, b, c}

R(R3) = {a, b, c}

And R3–1 = {(b, a), (a, b), (c, b), (b, c), (a, c), (c, a)} 

d) R4= {(a,b), (c,b), (d, b), (e, b)}

Solution:

So, D(R4) = {a, c, d, e}

R(R4) = {b}

And R4–1 = {(b, a), (b, c), (b, d), (b, e)} 

 

9. a) Let A= {2,3,4} and B={2,3,4,6}. Find a relation from set A to set B determined by the condition that x divides y. Also, find the domain and range of the function.

Solution:

Here, A = {2, 3, 4} and B = {2, 3, 4, 6}

So, A x B = {2, 3, 4) x {2, 3, 4, 6}

So, A x B = {(2, 2), (2, 3), (2, 4), (2, 6), (3, 2), (3, 3), (3, 4), (3, 6), (4, 2), (4, 3), (4, 4), (4, 6)}

Let R be the required relation on A x B.

Where, R = {(x.y): x divides y}

So, R = {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}

Domain R = {2, 3, 4}

And range R = {2, 3, 4, 6} 

b) Let A= {3, 4, 5, 6} and the relation is defined as R= {(x,y): x,y ԑ A and x + y = 7}. Express R as a set of ordered pairs. Find the domain, range and R-1.

Solution:

Here, A = {3, 4, 5, 6}

So, A x A = {3, 4, 5, 6} x {3, 4, 5, 6}

So, A x A = {(3, 3), (3, 4), (3, 5), (3, 6), (4, 3), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)}

Now, R = {(x, y): x, y ԑ A and x + y = 7}

So, R = {(3, 4), (4, 3)}

Domain R = {3, 4}

Range R = {3, 4}

And R–1 = {(4, 3), (3, 4)}

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.

Frequently Asked Questions

What is Nepali Educate?

Nepali Educate is an online platform dedicated to providing educational resources, support, and information for students, parents, and educators in Nepal.

What services does Nepali Educate offer?

Nepali Educate offers a range of services, including educational articles, exam preparation resources, career guidance, and information about educational institutions in Nepal.

How can I access the resources on Nepali Educate?

All resources on Nepali Educate are accessible through the website. Simply visit the website and explore the various sections, including articles, exam tips, and career guidance.

Are the resources on Nepali Educate free?

Yes, the majority of the resources on Nepali Educate are available for free. However, there might be some premium or additional services that require a subscription or payment.

How can I contribute to Nepali Educate?

Nepali Educate welcomes contributions from educators, professionals, and students. If you have valuable insights, educational content, or resources to share, you can contact us through the website for contribution opportunities.

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.