Complex Number Exercise 6.2 | Basic Mathematics Solution [NEB UPDATED]

Exercise 6.2

1) Express each of the following complex number in the form of a + ib.

a) (2 + 5i)

Solution:

(2 + 5i) + (1 + i) = 2 + 5i + 1 – i = 3 + 4i

Which is in the form of a + ib where, a = 3, b = 4. 

b) (2 + 5i) – (4 – i)

Solution:

(2 + 5i) – (4 – i) = 2 + 5i – 4 + I = - 2 + 6i

Which is in the form of a + ib where, a = -2, b = 6. 

c) (2 + 3i)(3 – 2i)

Solution:

(2 + 3i)(3 – 2i) = 6 – 4i + 9i – 6i2 = 6 + 5i + 6 = 12 + 5i

Which is in the form of a + ib where, a = 12, b = 5 

d) $\frac{{3 + 4{\rm{i}}}}{{4 - 3{\rm{i}}}}$

Solution:

$\frac{{3 + 4{\rm{i}}}}{{4 - 3{\rm{i}}}}$ = $\frac{{3 + 4{\rm{i}}}}{{4 - 3{\rm{i}}}}{\rm{*}}\frac{{4 + 3{\rm{i}}}}{{4 + 3{\rm{i}}}}$ = $\frac{{12 + 9{\rm{i}} + 16{\rm{i}} + 12{{\rm{i}}^2}}}{{{4^2} - \left( {3{{\rm{i}}^2}} \right)}}$

= $\frac{{12 + 25{\rm{i}} - 12}}{{16 - 9{{\rm{i}}^2}}}$ = $\frac{{25{\rm{i}}}}{{16 + 9}}$ = $\frac{{25{\rm{i}}}}{{25}}$ = i = 0 + i.

Which is in the form of a + ib where, a = 0, b = 1 

e) $\frac{{\rm{i}}}{{2 + {\rm{i}}}}{\rm{\: }}$

Solution:

$\frac{{\rm{i}}}{{2 + {\rm{i}}}}{\rm{\: }}$= $\frac{{\rm{i}}}{{2 + {\rm{i}}}}{\rm{*}}\frac{{2 - {\rm{i}}}}{{2 - {\rm{i}}}}$ = $\frac{{2{\rm{i}} - {{\rm{i}}^2}}}{{{2^2} - {1^2}}}$ = $\frac{{2{\rm{i}} - \left( { - 1} \right)}}{{4 - \left( { - 1} \right)}}$ = $\frac{{2{\rm{i}} + 1}}{{4 + 1}}$ = $\frac{{2{\rm{i}}}}{5}$ + $\frac{1}{5}$ = $\frac{1}{5}$ + $\frac{2}{5}$i

Which is in the form of a + ib where, a = $\frac{1}{5}$, b = $\frac{2}{5}$. 

f) $\frac{{1 - {\rm{i}}}}{{{{\left( {1 + {\rm{i}}} \right)}^2}}}$

Solution:

$\frac{{1 - {\rm{i}}}}{{{{\left( {1 + {\rm{i}}} \right)}^2}}}$ = $\frac{{1 - {\rm{i}}}}{{1 + 2{\rm{i}} + {{\rm{i}}^2}}}$ = $\frac{{1 - {\rm{i}}}}{{1 + 2{\rm{i}} - 1}}$ = $\frac{{1 - {\rm{i}}}}{{2{\rm{i}}}}$ = $\frac{{1 - {\rm{i}}}}{{2{\rm{i}}}}$ * $\frac{{2{\rm{i}}}}{{2{\rm{i}}}}$

= $\frac{{2{{\rm{i}}^2} - 2{{\rm{i}}^2}}}{{4{{\rm{i}}^2}}}$ = $\frac{{2{\rm{i}} - 2\left( { - 1} \right)}}{{4\left( { - 1} \right)}}$ = $\frac{{\left( {2{\rm{i}} + 2} \right)}}{{ - 4}}$ = $\frac{2}{{ - 4}} - \frac{{2{\rm{i}}}}{4}$ = $ - \frac{1}{2} - \frac{1}{2}{\rm{i}}$

Which is in the form of a + ib where, a = $ - \frac{1}{2}$ , b = $ - \frac{1}{2}$. 

g) $\frac{{2 - \sqrt { - 25} }}{{1 - \sqrt { - 16} }}$

Solution:

$\frac{{2 - \sqrt { - 25} }}{{1 - \sqrt { - 16} }}$ = $\frac{{2 - \sqrt { - 1{\rm{*}}25} }}{{1 - \sqrt {{{\rm{i}}^2}{\rm{*}}{4^2}} }}$ = $\frac{{2 - 5{\rm{i}}}}{{1 - 4{\rm{i}}}}{\rm{*}}\frac{{1 + 4{\rm{i}}}}{{1 + 4{\rm{i}}}}$

= $\frac{{2 + 8{\rm{i}} - 5{\rm{i}} - 20{{\rm{i}}^2}}}{{{1^2} - 16{{\rm{i}}^2}}}$ = $\frac{{2 + 3{\rm{i}} - 20\left( { - 1} \right)}}{{1 + 16}}$ = $\frac{{2 + 3{\rm{i}} + 20}}{{17}}$

= $\frac{{22}}{{17}}$ + $\frac{{3{\rm{i}}}}{{17}}$ Which is in the form of a + ib where, a =$\frac{{22}}{{17}}$ and b = $\frac{3}{{17}}$. 

h) $\sqrt {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}} $ 

Solution:

$\sqrt {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}} $ = $\sqrt {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}{\rm{*}}\frac{{1 + {\rm{i}}}}{{1 + {\rm{i}}}}} $ = $\frac{{1 + {\rm{i}}}}{{\sqrt {1 - {{\rm{i}}^2}} }}$ = $1 + {\rm{i}}/(\sqrt {1 + 1} {\rm{\: }}$ = $\frac{1}{{\sqrt 2 }}$ + $\frac{1}{{\sqrt 2 }}$i

Which is in the form of a + ib where, a = $\frac{1}{{\sqrt 2 }}$ , b = $\frac{1}{{\sqrt 2 }}$.

 

2) If z = 2 + 3i, and w=3-2i, find ${{\rm{\bar z}}^2}$ + ${{\rm{\bar w}}^2}$.

Solution:

If z = 2 + 3i, ${\rm{\bar z}}$ = 2 – 3i, If w = 3 – 2i, ${\rm{\bar w}}$ = 3 + 2i

Now, ${{\rm{\bar z}}^2}$ + ${{\rm{\bar w}}^2}$= (2 – 3i)2 + (3 + 2i)2

= 4 – 12i + 9i2 + 9 + 12i + 4i2

= 4 – 12i – 9 + 9 + 12i – 4 = 0 


3) Compute the absolute values of the following:

a) 1+ 2i

Solution:

Absolute value of 1 + 2i = |1 + 2i| = $\sqrt {{1^2} + {2^2}} $ = $\sqrt 5 $. 

b) 1 + $\sqrt 3 $i

Solution:

Absolute value of 1 + $\sqrt 3 $i = |1 + $\sqrt 3 $i| = $\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} $ = 2.

c)(1 + 2i)(2 + i) 

Solution:

Absolute value of (1 + 2i)(2 + i) = |(1 + 2i)(2 + i)| = |1 + 2i||2 + i| =  $\sqrt {1 + 4} $.$\sqrt {4 + 1} $ = 5 

d) (3 + 4i)(3 – 4i)

Solution:

Absolute value of (3 + 4i)(3 – 4i) = |(3 + 4i)(3 – 4i)|= |3 + 4i||3 + 4i| = $\sqrt {{3^2} + {4^2}} $ = $\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} $ = $\sqrt {25} .\sqrt {25} $ = 25. 

e)  (1 + i)-1

Solution:

Absolute value of (1 + i)-1 = |(1 + i)-1| = $\left| {\frac{1}{{1 + {\rm{i}}}}} \right|$.

= $\left| {\frac{1}{{1 + {\rm{i}}}}{\rm{*}}\frac{{1 - {\rm{i}}}}{{1 - {\rm{i}}}}} \right|$ = $\left| {\frac{{1 - {\rm{i}}}}{{{1^2} - {{\rm{i}}^2}}}} \right|$ = $\left| {\frac{{1 - {\rm{i}}}}{{1 + 1}}} \right|$

= $\left| {\frac{1}{2} - \frac{{\rm{i}}}{2}} \right|$ = $\sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( { - \frac{1}{2}} \right)}^2}} $ = $\sqrt {\frac{1}{4} + \frac{1}{4}} $ = $\sqrt {\frac{2}{4}} $ = $\frac{1}{{\sqrt 2 }}$

f) $\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}$

Solution:

Absolute value of $\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}$ = $\left| {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}} \right|$ = $\frac{{\left| {1 + {\rm{i}}} \right|}}{{\left| {1 - {\rm{i}}} \right|}}$ = $\frac{{\sqrt {{1^2} + {1^2}} }}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }}$ = $\frac{{\sqrt {1 + 1} }}{{\sqrt {1 + 1} }}$ = $\frac{{\sqrt 2 }}{{\sqrt 2 }}$ = 1.


4) If z= 1+2i and w=2-i, verify that: 

a)$\overline {{\rm{zw}}} $ = ${\rm{\bar z}}$.${\rm{\bar w}}$

Solution:

If z = 1 + 2i, ${\rm{\bar z}}$ = 1 – 2i and if w = 2 – i, ${\rm{\bar w}}$ = 2 + i

zw = (1 + 2i)(2 – i ) = 2 – i + 4i – 2i2 = 2 + 3i + 2 = 4 + 3i.

Then, $\overline {{\rm{zw}}} $ = 4 – 3i

Again, ${\rm{\bar z}}$.${\rm{\bar w}}$ = (1 – 2i)(2 + i) 2 + i – 4i – 2i2 = 2 – 3i + 2 = 4 – 4i.

Hence, $\overline {{\rm{zw}}} $ = ${\rm{\bar z}}$.${\rm{\bar w}}$.

b)$\overline {\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)} $ = $\frac{{{\rm{\bar z}}}}{{{\rm{\bar w}}}}$

Solution:

= $\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)$ = $\frac{{1 + 2{\rm{i}}}}{{2 - {\rm{i}}}}$ = $\frac{{1 + 2{\rm{i}}}}{{2 - {\rm{i}}}}{\rm{*}}\frac{{2 + {\rm{i}}}}{{2 + {\rm{i}}}}$ = $\frac{{2 + {\rm{i}} + 4{\rm{i}} + 2{{\rm{i}}^2}}}{{4 - {{\rm{i}}^2}}}$ = $\frac{{2 + 5{\rm{i}} - 2}}{{4 + 1}}$ = $\frac{{5{\rm{i}}}}{5}$ = i = 0 + i.

Then, $\overline {\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)} $ = 0 – i.

Again, $\frac{{{\rm{\bar z}}}}{{{\rm{\bar w}}}}$ = $\frac{{1 - 2{\rm{i}}}}{{2 + {\rm{i}}}}$ = $\frac{{1 - 2{\rm{i}}}}{{2 + {\rm{i}}}}{\rm{*}}\frac{{2 - {\rm{i}}}}{{2 - {\rm{i}}}}$ = $\frac{{2 - {\rm{i}} - 4{\rm{i}} + 2{{\rm{i}}^2}}}{{4 - {{\rm{i}}^2}}}$

= $\frac{{2 - 5{\rm{i}} - 2}}{{4 + 1}}$ = $ - \frac{{5{\rm{i}}}}{5}$ = -i = 0 – i.

Hence, $\overline {\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)} $ = $\frac{{{\rm{\bar z}}}}{{{\rm{\bar w}}}}$. 

c) |zw| = |z|.|w|

Solution:

|zw| = |(1 + 2i)(2 – i)| = |2 – i + 4i – 2i2| = |2 + 3i + 2|

= |4 + 3i| = $\sqrt {{4^2} + {3^2}} $ = $\sqrt {16 + 9{\rm{\: }}} $ = 5.

Again, $\left| {\rm{z}} \right|$.$\left| {\rm{w}} \right|$ = $\left| {1 + 2{\rm{i}}} \right|.\left| {2 - {\rm{i}}} \right|$ = $\sqrt {{1^2} + {2^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} $ = $\sqrt {1 + 4} $.$\sqrt {4 + 1} $ = $\sqrt 5 $.$\sqrt 5 $ = 5.

Hence, |zw| = |z|.|w| 

d)  |z + w| < |z| + |w|

Solution:

|z + w| = |1 + 2i + 2 – i| = |3 + i| = $\sqrt {{3^2} + {1^2}} $ = $\sqrt {10} $.

Again, |z| +|w| = |1 + 2i| + |2 – i|= $\sqrt {1 + 4}  + \sqrt {4 + 1} $ = $\sqrt 5 $ + $\sqrt 5 $ = 2$\sqrt 5 $ = $\sqrt {{2^2}{\rm{*}}5} $ = $\sqrt {20} $

Hence, |z + w| < |z| + |w|.

5) Prove that $\frac{{{\rm{\bar z}}}}{{{{\left( {\left| {\rm{z}} \right|} \right)}^2}}}$ is the multplicative inverse of z.

Solution:

Proof:

= $\frac{{{\rm{\bar z}}}}{{{{\left( {\left| {\rm{z}} \right|} \right)}^2}}}$.z = $\frac{{{\rm{z}}.{\rm{\bar z}}}}{{{{\left| {\rm{z}} \right|}^2}}}$ = $\frac{{{{\left| {\rm{z}} \right|}^2}}}{{{{\left| {\rm{z}} \right|}^2}}}$ = 1     [z.${\rm{\bar z}}$ = |z|2]

Hence, $\frac{{{\rm{\bar z}}}}{{{{\left( {\left| {\rm{z}} \right|} \right)}^2}}}$ is multiplicative inverse of z.

 

6.a) If (3 – 4i)(x + iy) = 3$\sqrt 5 $, show that 5x2 + 5y2 = 9 

Solution:

(3 – 4i)(x + iy) = 3$\sqrt 5 $

Taking modulus on both sides,

|(3 – 4i)(x + iy)| = |3$\sqrt 5 $|

= |3 – 4i||x + iy| = 3$\sqrt 5 $

= $\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} $.$\sqrt {{{\rm{x}}^2} + {{\rm{y}}^2}} $ = $3\sqrt 5 $.

= $\sqrt {25} $.$\sqrt {{{\rm{x}}^2} + {{\rm{y}}^2}} $ = 3$\sqrt 5 $.

Squaring both sides,

Or, 25(x2 + y2) = 9 * 5

So, 5x2 + 5y2 = 9 

b) If x + iy =$\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} + {\rm{ib}}}}{\rm{*}}\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} - {\rm{ib}}}}$, show that x2 + y2 = 1

Solution:

x + iy = $\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} + {\rm{ib}}}}{\rm{*}}\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} - {\rm{ib}}}}$ = $\frac{{{{\left( {{\rm{a}} - {\rm{ib}}} \right)}^2}}}{{{{\rm{a}}^2} - {{\rm{i}}^2}{{\rm{b}}^2}}}$= $\frac{{{{\rm{a}}^2} - 2{\rm{aib}} + {{\rm{i}}^2}{{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}$ = $\frac{{\left( {{{\rm{a}}^2} - {{\rm{b}}^2}} \right) - 2{\rm{abi}}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}$ = $\left( {\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}} \right) - \left( {\frac{{2{\rm{ab}}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}} \right)$i

Comparing real and imaginary parts.

x = $\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}$ and y = $ - \left( {\frac{{2{\rm{ab}}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}} \right)$

Now, x2 + y2 = ${\left( {\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}} \right)^2} + {\left( {\frac{{ - 2{\rm{ab}}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}} \right)^2}$ = $\frac{{{{\left( {{{\rm{a}}^2} - {{\rm{b}}^2}} \right)}^2} + 4{{\rm{a}}^2}{{\rm{b}}^2}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right)}^2}}}$ = $\frac{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right)}^2}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right)}^2}}}$ = 1.

Hence, x2 + y2 = 1 

c) If $\frac{{1 - ix}}{{1 + ix}} = a - ib,prove{\rm{ }}that{\rm{ }}{{\rm{a}}^{\rm{2}}}{\rm{  +  }}{{\rm{b}}^{\rm{2}}}{\rm{  =  1}}{\rm{.}}$

Solution:

$\frac{{1 - {\rm{ix}}}}{{1 + {\rm{ix}}}}{\rm{*}}\frac{{1 - {\rm{ix}}}}{{1 - {\rm{ix}}}}$ = a – ib.

Or, $\frac{{1 - 2{\rm{ix}} + {{\rm{i}}^2}{{\rm{x}}^2}}}{{{1^2} - {{\rm{i}}^2}{{\rm{x}}^2}}}$ = a – ib.

Or, $\frac{{1 - 2{\rm{ix}} - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}$ = a – ib

Or, $\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}} - \frac{{2{\rm{xi}}}}{{1 + {{\rm{x}}^2}}}$ = a – ib

Comparing real and imaginary parts.

Or, $\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}$ = a and $\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}$ = b.

Now, a2 + b2 = ${\left( {\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}} \right)^2} + {\left( {\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}} \right)^2}$ = $\frac{{{{\left( {1 - {{\rm{x}}^2}} \right)}^2} + 4{{\rm{x}}^2}}}{{{{\left( {1 + {{\rm{x}}^2}} \right)}^2}}}$

= $\frac{{{{\left( {1 + {{\rm{x}}^2}} \right)}^2}}}{{{{\left( {1 + {{\rm{x}}^2}} \right)}^2}}}$ = 1.

Hence, a2 + b2 = 1. 

d) $If{\rm{ x  -  iy  =  }}\sqrt {\frac{{1 - i}}{{1 + i}}} ,prove\;{\rm{that }}{{\rm{x}}^{\rm{2}}}{\rm{  +   }}{{\rm{y}}^{\rm{2}}}{\rm{  = 1}}{\rm{.}}$

Solution:

x – iy = $\sqrt {\frac{{1 - {\rm{i}}}}{{1 + {\rm{i}}}}{\rm{*}}\frac{{1 - {\rm{i}}}}{{1 - {\rm{i}}}}} $ = $\sqrt {\frac{{{{\left( {1 - {\rm{i}}} \right)}^2}}}{{{1^2} - {{\rm{i}}^2}}}} $ = $\frac{{1 - {\rm{i}}}}{{\sqrt {1 + 1} }}$ = $\frac{1}{{\sqrt 2 }} - \frac{{\rm{i}}}{{\sqrt 2 }}$.

Comparing real and imaginary parts.

x = $\frac{1}{{\sqrt 2 }}$, y = $\frac{1}{{\sqrt 2 }}$.

Now, x2 + y2 = ${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$+ ${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$ = $\frac{1}{2} + \frac{1}{2}$ = 1.

Hence, x2 + y2 = 1

 

7) If z and w are two complex number, prove that |z + w|2 = |z|2 + |w|2 + 2Re (z.${\rm{\bar w}}$)

Solution:

Let z = a + ib and w = c + id

Then z + w = a + ib + c + id = (a + c) + i(b + d)

Also, |z|2 = a2 + b2 and |w|2 = c2 + d2

Or, z.${\rm{\bar w}}$ = (a + ib)(c – id) = ac – iad + ibc – i2bd.

= (ac + bd) – i(ad – bc)

Re.(z.${\rm{\bar w}}$) = (ac + bd)

Now, |z + w|2 = |a + ib + c + id|2 = |(a + c) + i(b + d)|2

= (a + c)2 + (b + d)2 = a2 + 2ac + c2 + b2 + 2bd + d2

= (a2 + b2) + (c2 + d2) + 2(ac + bd)

= |z|2 + |w|2 + 2.Re  (z.${\rm{\bar w}}$)

Hence, |z + w|2 = |z|2 + |w|2 + 2Re (z.${\rm{\bar w}}$)

 

8) Find the multiplicative inverse of the following complex number: 

a) (3 + i)2

Solution:

Multiplicative inverse of (3 + i)2 = $\frac{1}{{{{\left( {3 + {\rm{i}}} \right)}^2}}}$.

= $\frac{1}{{9 + 6{\rm{i}} + {{\rm{i}}^2}}}$ = $\frac{1}{{9 + 6{\rm{i}} - 1}}$ =  $\frac{1}{{8 + 6{\rm{i}}}}$

= $\frac{1}{{8 + 6{\rm{i}}}}{\rm{*}}\frac{{8 - 6{\rm{i}}}}{{8 - 6{\rm{i}}}}$ = $\frac{{8 - 6{\rm{i}}}}{{64 - 36{{\rm{i}}^2}}}$ = $\frac{{8 - 6{\rm{i}}}}{{64 + 36}}$

= $\frac{{8 - 6{\rm{i}}}}{{100}}$ = $\frac{8}{{100}} - \frac{6}{{100}}$I = $\frac{2}{{25}} - \frac{3}{{50}}$i.

b) $\frac{{2 - 5{\rm{i}}}}{{6 + {\rm{i}}}}$

Solution:

Multiplicative inverse of $\frac{{2 - 5{\rm{i}}}}{{6 + {\rm{i}}}}$ = $\frac{{6 + {\rm{i}}}}{{2 - 5{\rm{i}}}}$

= $\frac{{6 + {\rm{i}}}}{{2 - 5{\rm{i}}}}{\rm{*}}\frac{{2 + 5{\rm{i}}}}{{2 + 5{\rm{i}}}}$ = $\frac{{12 + 30{\rm{i}} + 2{\rm{i}} + 5{{\rm{i}}^2}}}{{4 - 25{{\rm{i}}^2}}}$

= $\frac{{12 + 32{\rm{i}} - 5}}{{4 + 25}}$ = $\frac{{7 + 32{\rm{i}}}}{{29}}$ = $\frac{7}{{29}} + \frac{3}{{29}}$i.

 

9) If z and w  are two complex number, prove that |z| - |w| ≤ |z – w|.

Solution:

Proof:

Or, |z| = |z – w + w| ≤ |z – w| + |w|

So, |z| - |w| ≤ |z – w|

 

10) Determine the square root of the following numbers: 

a) 5 + 12i

Solution:

Let x + iy be the square root of 5 + 12i.

So that, (x + iy)2 = 5 + 12i

Or, x2 – y2 + 2xy.i = 5 + 12i

So, x2 – y2 = 5 …(i)

2xy = 12 …(ii)

We have, (x2 + y2)2 = (x2 – y2)2 + 4x2y2 = 52 + 122 = 169.

So, x2 + y2 = 13….(iii)

Solving (i) and (iii),

X2 – y2 = 5

X2 + y2 = 13

${\rm{\: }}$2x2 = 18.

So, x = ± 3 then y = ± 2.

Since, xy > 0.
So, x = 3., y =2.

Or, x = -3, y = -2

Hence, the square roots are 3 + 2i and – 3 – 2i.

i.e. ±(3 + 2i).

 

b) -5 + 12i

Solution:

Let x + iy be the square root of – 5 + 12i so that (x + iy)2 = - 5 + 12i

Or, x2 – y2 + 2xy.i = - 5 + 12i.

Equation real and imaginary parts,

Or, x2 – y = - 5…(i)

Or, 2xy = 12 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 25 + 144 = 169.

Or, x2 + y2 = 13 …(iii)

Adding (i) and (iii), 2x2 = 8 → x = ± 2.

Substituting the value of x in (iii), y2 = 9 → y = ±3.

Since, 2xy = 12 > 0.

So, x = 2, y = 3 and x = - 2 , y = -3.

So, the required roots are 2 + 3i and – 2 – 3i.

i.e. ±(2 + 3i).

 

c) 8 + 6i

Solution:

Let x + iy be the square root of 8 + 6i so that (x + iy)2 = 8 + 6i

Or, x2 – y2 + 2xy.i = 8 + 6i.

Equation real and imaginary parts,

Or, x2 – y = 8…(i)

Or, 2xy = 6 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 64 + 36 = 100.

Or, x2 + y2 = 10 …(iii)

Adding (i) and (iii), x2 = 9 → x = ± 3.

Substituting the value of x in (iii), y2 = 1 → y = ±1.

Since, 2xy = 6 > 0.

So, x = 3, y = 1 and x = - 3 , y = -1.

So, the required roots are 3 + i and – 3 – i.

i.e. ±(3 + i). 

 

d) - 8 + 6i

Solution:

Let x + iy be the square root of 8 + 6i so that (x + iy)2 = - 8 + 6i

Or, x2 – y2 + 2xy.i = - 8 + 6i.

Equation real and imaginary parts,

Or, x2 – y = - 8…(i)

Or, 2xy = 6 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 64 + 36 = 100.

Or, x2 + y2 = 10 …(iii)

Adding (i) and (iii), x2 = 1 → x = ± 1.

Substituting the value of x in (iii), y2 = 9→ y = ±3.

Since, 2xy = 6 > 0.

So, x = 1, y = 3 and x = - 1 , y = -3.

So, the required roots are 1 + 3i and – 1 – 3i.

i.e. ±(1 + 3i).

 

e) 7 – 24i

Solution:

Let x + iy be the square root of 7 – 24i so that (x + iy)2 = 7 – 24i

Or, x2 – y2 + 2xy.i = 7 – 24i

Equation real and imaginary parts,

Or, x2 – y = 7…(i)

Or, 2xy = -24 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 49 + 576 = 625

Or, x2 + y2 = 25 …(iii)

Adding (i) and (iii), x2 = 16 à x = ± 4.

Substituting the value of x in (iii), y2 = 9 → y = ±3.

Since, 2xy = - 24 < 0.

So, x = 4, y = - 3 → 4 – 3i and x = - 4, y = 3→ - 4 + 3i.

So, the required roots are i.e. ±(4 – 3i).

 

f) - 7 + 24i

Solution:

Let x + iy be the square root of  - 7 + 24i so that (x + iy)2 =  - 7 + 24i

Or, x2 – y2 + 2xy.i = - 7 + 24i

Equation real and imaginary parts,

Or, x2 – y = - 7…(i)

Or, 2xy = 24 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 49 + 576 = 625

Or, x2 + y2 = 25 …(iii)

Adding (i) and (iii), x2 = 9 → x = ± 3.

Substituting the value of x in (iii), y2 = 16à y = ±4.

Since, 2xy = 25 > 0.

So, x = 3, y = 4→3 + 4i and x = - 3, y = - 4à - 3 – 4i

So, the required roots are i.e. ±(3 + 4i).

 

g) i

Solution:

Let x + iy be the square root of  - 7 + 24i so that (x + iy)2 = i = 0 + i.

Or, x2 – y2 + 2xy.i = 0 + i

Equation real and imaginary parts,

Or, x2 – y = 0…(i)

Or, 2xy = 1 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 0 + 1 = 1.

Or, x2 + y2 = 1 …(iii)

Adding (i) and (iii), x2 = $\frac{1}{2}$→ x = ± $\frac{1}{{\sqrt 2 }}$.

Substituting the value of x in (iii), y2 = $\frac{1}{2}$→ y = ± $\frac{1}{{\sqrt 2 }}$.

Since, 2xy = 1 > 0.

So, x = $\frac{1}{{\sqrt 2 }}$, y = $\frac{1}{{\sqrt 2 }}$à$\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}$i = $\frac{1}{{\sqrt 2 }}$(1 + i) and x = - $\frac{1}{{\sqrt 2 }}$, y = - $\frac{1}{{\sqrt 2 }}$à$ - \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}$I = $\frac{1}{{\sqrt 2 }}$(- 1 – i).

So, the required roots are i.e. ± $\frac{1}{{\sqrt 2 }}$ (1 + i).

 

h) 12 – 5i

Solution:

Let x + iy be the square root of  12 – 5i so that (x + iy)2 = 12 – 5i

Or, x2 – y2 + 2xy.i = 12 – 5i

Equation real and imaginary parts,

Or, x2 – y = 12…(i)

Or, 2xy = -5 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 144 + 25 = 169.

Or, x2 + y2 = 13 …(iii)

Adding (i) and (iii), x2 = $\frac{{25}}{2}$→ x = ± $\frac{5}{{\sqrt 2 }}$.

Substituting the value of x in (iii), y2 = $\frac{1}{2}$→ y = ± $\frac{1}{{\sqrt 2 }}$.

Since, 2xy = - 5 < 0.

So, x = $\frac{5}{{\sqrt 2 }}$, y = $ - \frac{1}{{\sqrt 2 }}$→$\frac{5}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}$i and x = - $\frac{5}{{\sqrt 2 }}$, y =  $\frac{1}{{\sqrt 2 }}$à$ - \frac{5}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}$i

So, the required roots are i.e. ± $\left( {\frac{5}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}{\rm{i}}} \right)$ = ±$\frac{1}{{\sqrt 2 }}$(5 – i).

 

i) $\frac{{2 - 36{\rm{i}}}}{{2 + 3{\rm{i}}}}$

Solution:

Let x + iy be the square root of  $\frac{{2 - 36{\rm{i}}}}{{2 + 3{\rm{i}}}}$

so that (x + iy)2 = $\frac{{2 - 36{\rm{i}}}}{{2 + 3{\rm{i}}}} = \frac{{2 - 36{\rm{i}}}}{{2 + 3{\rm{i}}}}{\rm{*}}\frac{{2 - 3{\rm{i}}}}{{2 - 3{\rm{i}}}}$ = $\frac{{4 - 6{\rm{i}} - 72{\rm{i}} + 108{{\rm{i}}^2}}}{{4 - 9{{\rm{i}}^2}}}$ = $\frac{{4 - 78{\rm{i}} - 108}}{{4 + 9}}$ = $ - \frac{{104}}{{13}} - \frac{{78}}{{13}}{\rm{i}}$ = - 8 – 6i.

Or, x2 – y2 + 2xy.i = - 8 – 6i.

Equation real and imaginary parts,

Or, x2 – y = -8…(i)

Or, 2xy = -6 …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = 64 + 36 = 100.

Or, x2 + y2 = 10 …(iii)

Adding (i) and (iii), x2 = 1 → x = ± 1.

Substituting the value of x in (iii), y2 = 9 à y = ± 3.

Since, 2xy = - 6 < 0.

So, x = 1, y = - 3. → 1 – 3i  and x = - 1, y = 3 à - 1 + 3i.

So, the required roots are ± (1 – 3i).

 

j)$\frac{{\left( {5,12} \right)}}{{3, - 4}}$ 

Solution:

Let x + iy be the square root of  $\frac{{\left( {5,12} \right)}}{{3, - 4}}$ = $\frac{{5 + 12{\rm{i}}}}{{3 - 4{\rm{i}}}}$.

so that (x + iy)2 = $\frac{{5 + 12{\rm{i}}}}{{3 - 4{\rm{i}}}}$ = $\frac{{5 + 12{\rm{i}}}}{{3 - 4{\rm{i}}}}{\rm{*}}\frac{{3 + 4{\rm{i}}}}{{3 + 4{\rm{i}}}}$ = $\frac{{15 + 20{\rm{i}} + 36{\rm{i}} + 48{{\rm{i}}^2}}}{{9 - 16{{\rm{i}}^2}}}$ = $\frac{{15 + 56{\rm{i}} - 48}}{{9 + 16}}$ = $\frac{{ - 33 + 56{\rm{i}}}}{{25}}$ = $ - \frac{{33}}{{25}}{\rm{\: }}$+ $\frac{{56}}{{25}}$i

Or, x2 – y2 + 2xy.i = $ - \frac{{33}}{{25}} + \frac{{56}}{{25}}{\rm{i}}$

Equation real and imaginary parts,

Or, x2 – y = $ - \frac{{33}}{{25}}$ …(i)

Or, 2xy = $\frac{{56}}{{25}}$ …(ii)

Again,, (x2 + y2)2 = (x2 – y2)2 + (2xy)2 = ${\left( { - \frac{{33}}{{25}}} \right)^2} + {\left( {\frac{{56}}{{25}}} \right)^2}$ = $\frac{{1089 + 3136}}{{625}}$ = $\frac{{4225}}{{625}}$$\frac{{169}}{{25}}$

Or, x2 + y2 = $\frac{{13}}{5}$ …(iii)

Adding (i) and (iii), 2x2 = $\frac{{32}}{{25}}$→ x2 = $\frac{{16}}{{25}}$→ x = ± $\frac{4}{5}$.

Substituting the value of x in (iii), y2 = $\frac{{49}}{{25}}$→y = ± $\frac{7}{5}$.

Since, 2xy = $\frac{{56}}{{25}}$> 0.

So, x = $\frac{4}{5}$, y =${\rm{\: }}\frac{7}{5}$. →$\frac{4}{5} + \frac{7}{5}$i = $\frac{1}{5}$(4 + 7i) and x =$ - \frac{4}{5}$, y = $ - \frac{7}{5}$à$ - \frac{4}{5} - \frac{7}{5}$i = $ - \frac{1}{5}$(4 + 7i).

So, the required roots are ± $\frac{1}{5}$(4 + 7i).

Getting Info...

2 comments

  1. Sir there is missing of 10 no. (K ,l)no.
    Please update
    1. We will update them soon tilll then keep in touch with us via our Telegram Group.
Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.