Exercise 6.2
1) Express each of
the following complex number in the form of a + ib.
a) (2 + 5i)
Solution:
(2 + 5i) + (1 + i) = 2 + 5i + 1 – i = 3 + 4i
Which is in the form of a + ib where, a = 3, b = 4.
b) (2 + 5i) – (4 – i)
Solution:
(2 + 5i) – (4 – i) = 2 + 5i – 4 + I = - 2 + 6i
Which is in the form of a + ib where, a = -2, b = 6.
c) (2 + 3i)(3 – 2i)
Solution:
(2 + 3i)(3 – 2i) = 6 – 4i + 9i – 6i2 =
6 + 5i + 6 = 12 + 5i
Which is in the form of a + ib where, a = 12, b = 5
d) $\frac{{3 +
4{\rm{i}}}}{{4 - 3{\rm{i}}}}$
Solution:
$\frac{{3 + 4{\rm{i}}}}{{4 - 3{\rm{i}}}}$ = $\frac{{3 + 4{\rm{i}}}}{{4 - 3{\rm{i}}}}{\rm{*}}\frac{{4 + 3{\rm{i}}}}{{4 + 3{\rm{i}}}}$ = $\frac{{12 + 9{\rm{i}} + 16{\rm{i}} + 12{{\rm{i}}^2}}}{{{4^2} - \left( {3{{\rm{i}}^2}} \right)}}$
= $\frac{{12 + 25{\rm{i}} - 12}}{{16 - 9{{\rm{i}}^2}}}$ =
$\frac{{25{\rm{i}}}}{{16 + 9}}$ = $\frac{{25{\rm{i}}}}{{25}}$ = i = 0 + i.
Which is in the form of a + ib where, a = 0, b = 1
e) $\frac{{\rm{i}}}{{2
+ {\rm{i}}}}{\rm{\: }}$
Solution:
$\frac{{\rm{i}}}{{2 + {\rm{i}}}}{\rm{\: }}$=
$\frac{{\rm{i}}}{{2 + {\rm{i}}}}{\rm{*}}\frac{{2 - {\rm{i}}}}{{2 - {\rm{i}}}}$
= $\frac{{2{\rm{i}} - {{\rm{i}}^2}}}{{{2^2} - {1^2}}}$ = $\frac{{2{\rm{i}} -
\left( { - 1} \right)}}{{4 - \left( { - 1} \right)}}$ = $\frac{{2{\rm{i}} +
1}}{{4 + 1}}$ = $\frac{{2{\rm{i}}}}{5}$ + $\frac{1}{5}$ = $\frac{1}{5}$ +
$\frac{2}{5}$i
Which is in the form of a + ib where, a = $\frac{1}{5}$, b = $\frac{2}{5}$.
f)
Solution:
$\frac{{1 - {\rm{i}}}}{{{{\left( {1 + {\rm{i}}} \right)}^2}}}$
= $\frac{{1 - {\rm{i}}}}{{1 + 2{\rm{i}} + {{\rm{i}}^2}}}$ = $\frac{{1 -
{\rm{i}}}}{{1 + 2{\rm{i}} - 1}}$ = $\frac{{1 - {\rm{i}}}}{{2{\rm{i}}}}$ =
$\frac{{1 - {\rm{i}}}}{{2{\rm{i}}}}$ * $\frac{{2{\rm{i}}}}{{2{\rm{i}}}}$
= $\frac{{2{{\rm{i}}^2} - 2{{\rm{i}}^2}}}{{4{{\rm{i}}^2}}}$
= $\frac{{2{\rm{i}} - 2\left( { - 1} \right)}}{{4\left( { - 1} \right)}}$ =
$\frac{{\left( {2{\rm{i}} + 2} \right)}}{{ - 4}}$ = $\frac{2}{{ - 4}} -
\frac{{2{\rm{i}}}}{4}$ = $ - \frac{1}{2} - \frac{1}{2}{\rm{i}}$
Which is in the form of a + ib where, a = $ - \frac{1}{2}$ , b = $ - \frac{1}{2}$.
g)
Solution:
$\frac{{2 - \sqrt { - 25} }}{{1 - \sqrt { - 16} }}$ =
$\frac{{2 - \sqrt { - 1{\rm{*}}25} }}{{1 - \sqrt {{{\rm{i}}^2}{\rm{*}}{4^2}}
}}$ = $\frac{{2 - 5{\rm{i}}}}{{1 - 4{\rm{i}}}}{\rm{*}}\frac{{1 + 4{\rm{i}}}}{{1
+ 4{\rm{i}}}}$
= $\frac{{2 + 8{\rm{i}} - 5{\rm{i}} -
20{{\rm{i}}^2}}}{{{1^2} - 16{{\rm{i}}^2}}}$ = $\frac{{2 + 3{\rm{i}} - 20\left(
{ - 1} \right)}}{{1 + 16}}$ = $\frac{{2 + 3{\rm{i}} + 20}}{{17}}$
= $\frac{{22}}{{17}}$ + $\frac{{3{\rm{i}}}}{{17}}$ Which is in the form of a + ib where, a =$\frac{{22}}{{17}}$ and b = $\frac{3}{{17}}$.
h)
Solution:
$\sqrt {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}} $ = $\sqrt
{\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}{\rm{*}}\frac{{1 + {\rm{i}}}}{{1 +
{\rm{i}}}}} $ = $\frac{{1 + {\rm{i}}}}{{\sqrt {1 - {{\rm{i}}^2}} }}$ = $1 +
{\rm{i}}/(\sqrt {1 + 1} {\rm{\: }}$ = $\frac{1}{{\sqrt 2 }}$ + $\frac{1}{{\sqrt
2 }}$i
Which is in the form of a + ib where, a = $\frac{1}{{\sqrt 2
}}$ , b = $\frac{1}{{\sqrt 2 }}$.
2)
Solution:
If z = 2 + 3i, ${\rm{\bar z}}$ = 2 – 3i, If w = 3 – 2i,
${\rm{\bar w}}$ = 3 + 2i
Now, ${{\rm{\bar z}}^2}$ + ${{\rm{\bar w}}^2}$= (2 – 3i)2 +
(3 + 2i)2
= 4 – 12i + 9i2 + 9 + 12i + 4i2
= 4 – 12i – 9 + 9 + 12i – 4 = 0
3) Compute the absolute values of the following:
a) 1+ 2i
Solution:
Absolute value of 1 + 2i = |1 + 2i| = $\sqrt {{1^2} + {2^2}} $ = $\sqrt 5 $.
b)
Solution:
Absolute value of 1 + $\sqrt 3 $i = |1 + $\sqrt 3 $i| =
$\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} $ = 2.
c)
Solution:
Absolute value of (1 + 2i)(2 + i) = |(1 + 2i)(2 + i)| = |1 + 2i||2 + i| = $\sqrt {1 + 4} $.$\sqrt {4 + 1} $ = 5
d)
Solution:
Absolute value of (3 + 4i)(3 – 4i) = |(3 + 4i)(3 – 4i)|= |3 + 4i||3 + 4i| = $\sqrt {{3^2} + {4^2}} $ = $\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} $ = $\sqrt {25} .\sqrt {25} $ = 25.
e)
Solution:
Absolute value of (1 + i)-1 = |(1 + i)-1|
= $\left| {\frac{1}{{1 + {\rm{i}}}}} \right|$.
= $\left| {\frac{1}{{1 + {\rm{i}}}}{\rm{*}}\frac{{1 -
{\rm{i}}}}{{1 - {\rm{i}}}}} \right|$ = $\left| {\frac{{1 - {\rm{i}}}}{{{1^2} -
{{\rm{i}}^2}}}} \right|$ = $\left| {\frac{{1 - {\rm{i}}}}{{1 + 1}}} \right|$
= $\left| {\frac{1}{2} - \frac{{\rm{i}}}{2}} \right|$ = $\sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( { - \frac{1}{2}} \right)}^2}} $ = $\sqrt {\frac{1}{4} + \frac{1}{4}} $ = $\sqrt {\frac{2}{4}} $ = $\frac{1}{{\sqrt 2 }}$
f)
Solution:
Absolute value of $\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}$ = $\left| {\frac{{1 + {\rm{i}}}}{{1 - {\rm{i}}}}} \right|$ = $\frac{{\left| {1 + {\rm{i}}} \right|}}{{\left| {1 - {\rm{i}}} \right|}}$ = $\frac{{\sqrt {{1^2} + {1^2}} }}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }}$ = $\frac{{\sqrt {1 + 1} }}{{\sqrt {1 + 1} }}$ = $\frac{{\sqrt 2 }}{{\sqrt 2 }}$ = 1.
4) If z= 1+2i and w=2-i, verify that:
a)
Solution:
If z = 1 + 2i, ${\rm{\bar z}}$ = 1 – 2i and if w = 2 – i,
${\rm{\bar w}}$ = 2 + i
zw = (1 + 2i)(2 – i ) = 2 – i + 4i – 2i2 = 2
+ 3i + 2 = 4 + 3i.
Then, $\overline {{\rm{zw}}} $ = 4 – 3i
Again, ${\rm{\bar z}}$.${\rm{\bar w}}$ = (1 – 2i)(2 + i) 2 +
i – 4i – 2i2 = 2 – 3i + 2 = 4 – 4i.
Hence, $\overline {{\rm{zw}}} $ = ${\rm{\bar z}}$.${\rm{\bar w}}$.
b)
Solution:
= $\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)$ = $\frac{{1 +
2{\rm{i}}}}{{2 - {\rm{i}}}}$ = $\frac{{1 + 2{\rm{i}}}}{{2 -
{\rm{i}}}}{\rm{*}}\frac{{2 + {\rm{i}}}}{{2 + {\rm{i}}}}$ = $\frac{{2 + {\rm{i}}
+ 4{\rm{i}} + 2{{\rm{i}}^2}}}{{4 - {{\rm{i}}^2}}}$ = $\frac{{2 + 5{\rm{i}} -
2}}{{4 + 1}}$ = $\frac{{5{\rm{i}}}}{5}$ = i = 0 + i.
Then, $\overline {\left( {\frac{{\rm{z}}}{{\rm{w}}}}
\right)} $ = 0 – i.
Again, $\frac{{{\rm{\bar z}}}}{{{\rm{\bar w}}}}$ = $\frac{{1
- 2{\rm{i}}}}{{2 + {\rm{i}}}}$ = $\frac{{1 - 2{\rm{i}}}}{{2 +
{\rm{i}}}}{\rm{*}}\frac{{2 - {\rm{i}}}}{{2 - {\rm{i}}}}$ = $\frac{{2 - {\rm{i}}
- 4{\rm{i}} + 2{{\rm{i}}^2}}}{{4 - {{\rm{i}}^2}}}$
= $\frac{{2 - 5{\rm{i}} - 2}}{{4 + 1}}$ = $ -
\frac{{5{\rm{i}}}}{5}$ = -i = 0 – i.
Hence, $\overline {\left( {\frac{{\rm{z}}}{{\rm{w}}}} \right)} $ = $\frac{{{\rm{\bar z}}}}{{{\rm{\bar w}}}}$.
c)
Solution:
|zw| = |(1 + 2i)(2 – i)| = |2 – i + 4i – 2i2| =
|2 + 3i + 2|
= |4 + 3i| = $\sqrt {{4^2} + {3^2}} $ = $\sqrt {16 +
9{\rm{\: }}} $ = 5.
Again, $\left| {\rm{z}} \right|$.$\left| {\rm{w}} \right|$ =
$\left| {1 + 2{\rm{i}}} \right|.\left| {2 - {\rm{i}}} \right|$ = $\sqrt {{1^2}
+ {2^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} $ = $\sqrt {1 + 4}
$.$\sqrt {4 + 1} $ = $\sqrt 5 $.$\sqrt 5 $ = 5.
Hence, |zw| = |z|.|w|
d)
Solution:
|z + w| = |1 + 2i + 2 – i| = |3 + i| = $\sqrt {{3^2} +
{1^2}} $ = $\sqrt {10} $.
Again, |z| +|w| = |1 + 2i| + |2 – i|= $\sqrt {1 + 4} +
\sqrt {4 + 1} $ = $\sqrt 5 $ + $\sqrt 5 $ = 2$\sqrt 5 $ = $\sqrt
{{2^2}{\rm{*}}5} $ = $\sqrt {20} $
Hence, |z + w| < |z| + |w|.
5) Prove that
Solution:
Proof:
= $\frac{{{\rm{\bar z}}}}{{{{\left( {\left| {\rm{z}}
\right|} \right)}^2}}}$.z = $\frac{{{\rm{z}}.{\rm{\bar z}}}}{{{{\left| {\rm{z}}
\right|}^2}}}$ = $\frac{{{{\left| {\rm{z}} \right|}^2}}}{{{{\left| {\rm{z}}
\right|}^2}}}$ = 1 [z.${\rm{\bar z}}$ = |z|2]
Hence, $\frac{{{\rm{\bar z}}}}{{{{\left( {\left| {\rm{z}}
\right|} \right)}^2}}}$ is multiplicative inverse of z.
6.a) If (3 – 4i)(x + iy) = 3$\sqrt 5 $, show that 5x2 + 5y2 = 9
Solution:
(3 – 4i)(x + iy) = 3$\sqrt 5 $
Taking modulus on both sides,
|(3 – 4i)(x + iy)| = |3$\sqrt 5 $|
= |3 – 4i||x + iy| = 3$\sqrt 5 $
= $\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} $.$\sqrt
{{{\rm{x}}^2} + {{\rm{y}}^2}} $ = $3\sqrt 5 $.
= $\sqrt {25} $.$\sqrt {{{\rm{x}}^2} + {{\rm{y}}^2}} $ =
3$\sqrt 5 $.
Squaring both sides,
Or, 25(x2 + y2) = 9 * 5
So, 5x2 + 5y2 = 9
b) If x + iy =
Solution:
x + iy = $\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} +
{\rm{ib}}}}{\rm{*}}\frac{{{\rm{a}} - {\rm{ib}}}}{{{\rm{a}} - {\rm{ib}}}}$ =
$\frac{{{{\left( {{\rm{a}} - {\rm{ib}}} \right)}^2}}}{{{{\rm{a}}^2} -
{{\rm{i}}^2}{{\rm{b}}^2}}}$= $\frac{{{{\rm{a}}^2} - 2{\rm{aib}} +
{{\rm{i}}^2}{{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}$ = $\frac{{\left(
{{{\rm{a}}^2} - {{\rm{b}}^2}} \right) - 2{\rm{abi}}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}$ = $\left( {\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}} \right) - \left( {\frac{{2{\rm{ab}}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}} \right)$i
Comparing real and imaginary parts.
x = $\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}$ and y = $ - \left( {\frac{{2{\rm{ab}}}}{{{{\rm{a}}^2} +
{{\rm{b}}^2}}}} \right)$
Now, x2 + y2 = ${\left(
{\frac{{{{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}}
\right)^2} + {\left( {\frac{{ - 2{\rm{ab}}}}{{{{\rm{a}}^2} + {{\rm{b}}^2}}}}
\right)^2}$ = $\frac{{{{\left( {{{\rm{a}}^2} - {{\rm{b}}^2}} \right)}^2} +
4{{\rm{a}}^2}{{\rm{b}}^2}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}}
\right)}^2}}}$ = $\frac{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}}
\right)}^2}}}{{{{\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right)}^2}}}$ = 1.
Hence, x2 + y2 = 1
c) If $\frac{{1 - ix}}{{1 + ix}} = a - ib,prove{\rm{ }}that{\rm{ }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ = 1}}{\rm{.}}$
Solution:
$\frac{{1 - {\rm{ix}}}}{{1 +
{\rm{ix}}}}{\rm{*}}\frac{{1 - {\rm{ix}}}}{{1 - {\rm{ix}}}}$ = a – ib.
Or, $\frac{{1 - 2{\rm{ix}} +
{{\rm{i}}^2}{{\rm{x}}^2}}}{{{1^2} - {{\rm{i}}^2}{{\rm{x}}^2}}}$ = a – ib.
Or, $\frac{{1 - 2{\rm{ix}} - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}$
= a – ib
Or, $\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}} -
\frac{{2{\rm{xi}}}}{{1 + {{\rm{x}}^2}}}$ = a – ib
Comparing real and imaginary parts.
Or, $\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}$ = a and
$\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}$ = b.
Now, a2 + b2 = ${\left(
{\frac{{1 - {{\rm{x}}^2}}}{{1 + {{\rm{x}}^2}}}} \right)^2} + {\left(
{\frac{{2{\rm{x}}}}{{1 + {{\rm{x}}^2}}}} \right)^2}$ = $\frac{{{{\left( {1 -
{{\rm{x}}^2}} \right)}^2} + 4{{\rm{x}}^2}}}{{{{\left( {1 + {{\rm{x}}^2}}
\right)}^2}}}$
= $\frac{{{{\left( {1 + {{\rm{x}}^2}}
\right)}^2}}}{{{{\left( {1 + {{\rm{x}}^2}} \right)}^2}}}$ = 1.
Hence, a2 + b2 = 1.
d) $If{\rm{ x - iy = }}\sqrt {\frac{{1 - i}}{{1 + i}}} ,prove\;{\rm{that }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}{\rm{.}}$
Solution:
x – iy = $\sqrt {\frac{{1 - {\rm{i}}}}{{1 + {\rm{i}}}}{\rm{*}}\frac{{1 - {\rm{i}}}}{{1 - {\rm{i}}}}} $ = $\sqrt {\frac{{{{\left( {1 - {\rm{i}}} \right)}^2}}}{{{1^2} - {{\rm{i}}^2}}}} $ = $\frac{{1 - {\rm{i}}}}{{\sqrt {1 + 1} }}$ = $\frac{1}{{\sqrt 2 }} - \frac{{\rm{i}}}{{\sqrt 2 }}$.
Comparing real and imaginary parts.
x = $\frac{1}{{\sqrt 2 }}$, y = $\frac{1}{{\sqrt 2 }}$.
Now, x2 + y2 = ${\left(
{\frac{1}{{\sqrt 2 }}} \right)^2}$+ ${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$
= $\frac{1}{2} + \frac{1}{2}$ = 1.
Hence, x2 + y2 = 1
7) If z and w are two complex number, prove that
Solution:
Let z = a + ib and w = c + id
Then z + w = a + ib + c + id = (a + c) + i(b + d)
Also, |z|2 = a2 + b2 and
|w|2 = c2 + d2
Or, z.${\rm{\bar w}}$ = (a + ib)(c – id) = ac – iad + ibc –
i2bd.
= (ac + bd) – i(ad – bc)
Re.(z.${\rm{\bar w}}$) = (ac + bd)
Now, |z + w|2 = |a + ib + c + id|2 =
|(a + c) + i(b + d)|2
= (a + c)2 + (b + d)2 = a2 +
2ac + c2 + b2 + 2bd + d2
= (a2 + b2) + (c2 +
d2) + 2(ac + bd)
= |z|2 + |w|2 + 2.Re
(z.${\rm{\bar w}}$)
Hence, |z + w|2 = |z|2 + |w|2 +
2Re (z.${\rm{\bar w}}$)
8) Find the multiplicative inverse of the following complex number:
a)
Solution:
Multiplicative inverse of (3 + i)2 =
$\frac{1}{{{{\left( {3 + {\rm{i}}} \right)}^2}}}$.
= $\frac{1}{{9 + 6{\rm{i}} + {{\rm{i}}^2}}}$ = $\frac{1}{{9
+ 6{\rm{i}} - 1}}$ = $\frac{1}{{8 + 6{\rm{i}}}}$
= $\frac{1}{{8 + 6{\rm{i}}}}{\rm{*}}\frac{{8 -
6{\rm{i}}}}{{8 - 6{\rm{i}}}}$ = $\frac{{8 - 6{\rm{i}}}}{{64 - 36{{\rm{i}}^2}}}$
= $\frac{{8 - 6{\rm{i}}}}{{64 + 36}}$
= $\frac{{8 - 6{\rm{i}}}}{{100}}$ = $\frac{8}{{100}} - \frac{6}{{100}}$I = $\frac{2}{{25}} - \frac{3}{{50}}$i.
b)
Solution:
Multiplicative inverse of $\frac{{2 - 5{\rm{i}}}}{{6 +
{\rm{i}}}}$ = $\frac{{6 + {\rm{i}}}}{{2 - 5{\rm{i}}}}$
= $\frac{{6 + {\rm{i}}}}{{2 - 5{\rm{i}}}}{\rm{*}}\frac{{2 +
5{\rm{i}}}}{{2 + 5{\rm{i}}}}$ = $\frac{{12 + 30{\rm{i}} + 2{\rm{i}} +
5{{\rm{i}}^2}}}{{4 - 25{{\rm{i}}^2}}}$
= $\frac{{12 + 32{\rm{i}} - 5}}{{4 + 25}}$ = $\frac{{7 +
32{\rm{i}}}}{{29}}$ = $\frac{7}{{29}} + \frac{3}{{29}}$i.
9) If z and w are two complex number, prove that |z| - |w| ≤ |z – w|.
Solution:
Proof:
Or, |z| = |z – w + w| ≤ |z – w| + |w|
So, |z| - |w| ≤ |z – w|
10) Determine the square root of the following numbers:
a)
Solution:
Let x + iy be the square root of 5 + 12i.
So that, (x + iy)2 = 5 + 12i
Or, x2 – y2 + 2xy.i = 5 +
12i
So, x2 – y2 = 5 …(i)
2xy = 12 …(ii)
We have, (x2 + y2)2 =
(x2 – y2)2 + 4x2y2 =
52 + 122 = 169.
So, x2 + y2 = 13….(iii)
Solving (i) and (iii),
X2 – y2 = 5
X2 +
y2 = 13
${\rm{\: }}$2x2 = 18.
So, x = ± 3 then y = ± 2.
Since, xy > 0.
So, x = 3., y =2.
Or, x = -3, y = -2
Hence, the square roots are 3 + 2i and – 3 – 2i.
i.e. ±(3 + 2i).
b) -
Solution:
Let x + iy be the square root of – 5 + 12i so that (x + iy)2 =
- 5 + 12i
Or, x2 – y2 + 2xy.i = - 5 +
12i.
Equation real and imaginary parts,
Or, x2 – y2 = - 5…(i)
Or, 2xy = 12 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
25 + 144 = 169.
Or, x2 + y2 = 13 …(iii)
Adding (i) and (iii), 2x2 = 8 → x = ± 2.
Substituting the value of x in (iii), y2 = 9
→ y = ±3.
Since, 2xy = 12 > 0.
So, x = 2, y = 3 and x = - 2 , y = -3.
So, the required roots are 2 + 3i and – 2 – 3i.
i.e. ±(2 + 3i).
c)
Solution:
Let x + iy be the square root of 8 + 6i so that (x + iy)2 =
8 + 6i
Or, x2 – y2 + 2xy.i = 8 +
6i.
Equation real and imaginary parts,
Or, x2 – y2 = 8…(i)
Or, 2xy = 6 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
64 + 36 = 100.
Or, x2 + y2 = 10 …(iii)
Adding (i) and (iii), x2 = 9 → x = ± 3.
Substituting the value of x in (iii), y2 = 1
→ y = ±1.
Since, 2xy = 6 > 0.
So, x = 3, y = 1 and x = - 3 , y = -1.
So, the required roots are 3 + i and – 3 – i.
i.e. ±(3 + i).
d)
Solution:
Let x + iy be the square root of 8 + 6i so that (x + iy)2 =
- 8 + 6i
Or, x2 – y2 + 2xy.i = - 8 +
6i.
Equation real and imaginary parts,
Or, x2 – y2 = - 8…(i)
Or, 2xy = 6 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
64 + 36 = 100.
Or, x2 + y2 = 10 …(iii)
Adding (i) and (iii), x2 = 1 → x = ± 1.
Substituting the value of x in (iii), y2 = 9→ y = ±3.
Since, 2xy = 6 > 0.
So, x = 1, y = 3 and x = - 1 , y = -3.
So, the required roots are 1 + 3i and – 1 – 3i.
i.e. ±(1 + 3i).
e)
Solution:
Let x + iy be the square root of 7 – 24i so that (x + iy)2 =
7 – 24i
Or, x2 – y2 + 2xy.i = 7 –
24i
Equation real and imaginary parts,
Or, x2 – y2 = 7…(i)
Or, 2xy = -24 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
49 + 576 = 625
Or, x2 + y2 = 25 …(iii)
Adding (i) and (iii), x2 = 16 à x = ± 4.
Substituting the value of x in (iii), y2 = 9
→ y = ±3.
Since, 2xy = - 24 < 0.
So, x = 4, y = - 3 → 4 – 3i and x = - 4, y = 3→ - 4 + 3i.
So, the required roots are i.e. ±(4 – 3i).
f)
Solution:
Let x + iy be the square root of - 7 + 24i so that (x
+ iy)2 = - 7 + 24i
Or, x2 – y2 + 2xy.i = - 7 +
24i
Equation real and imaginary parts,
Or, x2 – y2 = - 7…(i)
Or, 2xy = 24 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
49 + 576 = 625
Or, x2 + y2 = 25 …(iii)
Adding (i) and (iii), x2 = 9 → x = ± 3.
Substituting the value of x in (iii), y2 =
16à y = ±4.
Since, 2xy = 25 > 0.
So, x = 3, y = 4→3 + 4i and x = - 3, y = - 4à - 3 – 4i
So, the required roots are i.e. ±(3 + 4i).
g) i
Solution:
Let x + iy be the square root of - 7 + 24i so that (x
+ iy)2 = i = 0 + i.
Or, x2 – y2 + 2xy.i = 0 + i
Equation real and imaginary parts,
Or, x2 – y2 = 0…(i)
Or, 2xy = 1 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
0 + 1 = 1.
Or, x2 + y2 = 1 …(iii)
Adding (i) and (iii), x2 = $\frac{1}{2}$→ x
= ± $\frac{1}{{\sqrt 2 }}$.
Substituting the value of x in (iii), y2 =
$\frac{1}{2}$→ y = ± $\frac{1}{{\sqrt 2 }}$.
Since, 2xy = 1 > 0.
So, x = $\frac{1}{{\sqrt 2 }}$, y = $\frac{1}{{\sqrt 2
}}$à$\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}$i = $\frac{1}{{\sqrt 2 }}$(1 +
i) and x = - $\frac{1}{{\sqrt 2 }}$, y = - $\frac{1}{{\sqrt 2 }}$à$ -
\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}$I = $\frac{1}{{\sqrt 2 }}$(- 1 –
i).
So, the required roots are i.e. ± $\frac{1}{{\sqrt 2 }}$ (1 +
i).
h)
Solution:
Let x + iy be the square root of 12 – 5i so that (x +
iy)2 = 12 – 5i
Or, x2 – y2 + 2xy.i = 12 –
5i
Equation real and imaginary parts,
Or, x2 – y2 = 12…(i)
Or, 2xy = -5 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
144 + 25 = 169.
Or, x2 + y2 = 13 …(iii)
Adding (i) and (iii), x2 = $\frac{{25}}{2}$→
x = ± $\frac{5}{{\sqrt 2 }}$.
Substituting the value of x in (iii), y2 =
$\frac{1}{2}$→ y = ± $\frac{1}{{\sqrt 2 }}$.
Since, 2xy = - 5 < 0.
So, x = $\frac{5}{{\sqrt 2 }}$, y = $ - \frac{1}{{\sqrt 2
}}$→$\frac{5}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}$i and x = - $\frac{5}{{\sqrt 2
}}$, y = $\frac{1}{{\sqrt 2 }}$à$ - \frac{5}{{\sqrt 2 }} +
\frac{1}{{\sqrt 2 }}$i
So, the required roots are i.e. ± $\left( {\frac{5}{{\sqrt 2
}} - \frac{1}{{\sqrt 2 }}{\rm{i}}} \right)$ = ±$\frac{1}{{\sqrt 2 }}$(5 – i).
i)
Solution:
Let x + iy be the square root of $\frac{{2 -
36{\rm{i}}}}{{2 + 3{\rm{i}}}}$
so that (x + iy)2 = $\frac{{2 -
36{\rm{i}}}}{{2 + 3{\rm{i}}}} = \frac{{2 - 36{\rm{i}}}}{{2 + 3{\rm{i}}}}{\rm{*}}\frac{{2
- 3{\rm{i}}}}{{2 - 3{\rm{i}}}}$ = $\frac{{4 - 6{\rm{i}} - 72{\rm{i}} +
108{{\rm{i}}^2}}}{{4 - 9{{\rm{i}}^2}}}$ = $\frac{{4 - 78{\rm{i}} - 108}}{{4 +
9}}$ = $ - \frac{{104}}{{13}} - \frac{{78}}{{13}}{\rm{i}}$ = - 8 – 6i.
Or, x2 – y2 + 2xy.i = - 8 –
6i.
Equation real and imaginary parts,
Or, x2 – y2 = -8…(i)
Or, 2xy = -6 …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
64 + 36 = 100.
Or, x2 + y2 = 10 …(iii)
Adding (i) and (iii), x2 = 1 → x = ± 1.
Substituting the value of x in (iii), y2 = 9
à y = ± 3.
Since, 2xy = - 6 < 0.
So, x = 1, y = - 3. → 1 – 3i and x = - 1, y = 3 à - 1
+ 3i.
So, the required roots are ± (1 – 3i).
j)
Solution:
Let x + iy be the square root of $\frac{{\left( {5,12}
\right)}}{{3, - 4}}$ = $\frac{{5 + 12{\rm{i}}}}{{3 - 4{\rm{i}}}}$.
so that (x + iy)2 = $\frac{{5 +
12{\rm{i}}}}{{3 - 4{\rm{i}}}}$ = $\frac{{5 + 12{\rm{i}}}}{{3 -
4{\rm{i}}}}{\rm{*}}\frac{{3 + 4{\rm{i}}}}{{3 + 4{\rm{i}}}}$ = $\frac{{15 +
20{\rm{i}} + 36{\rm{i}} + 48{{\rm{i}}^2}}}{{9 - 16{{\rm{i}}^2}}}$ = $\frac{{15
+ 56{\rm{i}} - 48}}{{9 + 16}}$ = $\frac{{ - 33 + 56{\rm{i}}}}{{25}}$ = $ -
\frac{{33}}{{25}}{\rm{\: }}$+ $\frac{{56}}{{25}}$i
Or, x2 – y2 + 2xy.i = $ -
\frac{{33}}{{25}} + \frac{{56}}{{25}}{\rm{i}}$
Equation real and imaginary parts,
Or, x2 – y2 = $ -
\frac{{33}}{{25}}$ …(i)
Or, 2xy = $\frac{{56}}{{25}}$ …(ii)
Again,, (x2 + y2)2 =
(x2 – y2)2 + (2xy)2 =
${\left( { - \frac{{33}}{{25}}} \right)^2} + {\left( {\frac{{56}}{{25}}}
\right)^2}$ = $\frac{{1089 + 3136}}{{625}}$ = $\frac{{4225}}{{625}}$$\frac{{169}}{{25}}$
Or, x2 + y2 =
$\frac{{13}}{5}$ …(iii)
Adding (i) and (iii), 2x2 =
$\frac{{32}}{{25}}$→ x2 = $\frac{{16}}{{25}}$→ x = ±
$\frac{4}{5}$.
Substituting the value of x in (iii), y2 =
$\frac{{49}}{{25}}$→y = ± $\frac{7}{5}$.
Since, 2xy = $\frac{{56}}{{25}}$> 0.
So, x = $\frac{4}{5}$, y =${\rm{\: }}\frac{7}{5}$.
→$\frac{4}{5} + \frac{7}{5}$i = $\frac{1}{5}$(4 + 7i) and x =$ - \frac{4}{5}$,
y = $ - \frac{7}{5}$à$ - \frac{4}{5} - \frac{7}{5}$i = $ - \frac{1}{5}$(4 +
7i).
So, the required roots are ± $\frac{1}{5}$(4 + 7i).