Exercise 6.1
1) Evaluate:
Solution:
a)
(1,0)2 = 12 = 1
b)
(1,0)3 = 13 = 1
c)
(0,1)5 = i5 = (i2)2.i =
(-1)2.i = 1.i = i
d)
(0,i)11 = i11 = (i2)5.i =
-1.-I = -i.
2) Find the values of
x and y in each of the following:
Solution:
a) (x,y) = (2 + 3,3 +
2) = (5,5). So, x = 5 , y = 5.
b) (x,y) = (2 – 2,1 –
1) = (0,0). So, x = 0 , y = 0.
c) (x,y) = (2,3) –
(3,2) = (2 – 3,3 – 2) = (-1,1). So, x = -1 , y = 1.
d) (2,3) = (1,1) + (x
+ y) = (1 + x,1 + y)
Here, 2 = 1 + x, 3 = 1 + y
So, x = 1 and y = 2.
e) (x,y) =
(1,1).(2,3)
(1 + i).(2 + 3i) = 2 + 3i + 2i + 3i2 = - 1 +
5i
So, x = -1 and y = 5.
f) (x.y) =
$\frac{{\left( {1,1} \right)}}{{\left( {3,4} \right)}}{\rm{\: }}$
Or, x + iy = $\frac{{\left( {1+i} \right)}}{{\left(
{3+ 4i} \right)}}{\rm{\: }}$ * $\frac{{\left( {3-4i}
\right)}}{{\left( {3-4i} \right)}}{\rm{\: }}$
= $\frac{{\left( {7- i} \right)}}{{\left( {9+16}
\right)}}{\rm{\: }}$
= $\frac{{\left( {7- i} \right)}}{{\left( 25
\right)}}{\rm{\: }}$
= 7/25 + i(-1/25)
So, x = 7/25, y = -1/25
3) Simplify:
a) $\sqrt{ - 9} $ +
$\sqrt { - 25} $ – $\sqrt { - 36} $
Solution:
$\sqrt{ - 9} $ + $\sqrt { - 25} $ – $\sqrt { - 36} $
Or, $\sqrt{ - 9} $ + $\sqrt { - 25} $ – $\sqrt { - 36} $
= $\sqrt { - 1{\rm{*}}9} $ + $\sqrt { - 1{\rm{*}}25} $ –
$\sqrt { - 1{\rm{*}}36} $.
= $\sqrt {{{\rm{i}}^2}{\rm{*}}{3^2}} $ + $\sqrt
{{{\rm{i}}^2}{\rm{*}}{5^2}} $ – $\sqrt {{{\rm{i}}^2}{\rm{*}}{6^2}} $
= 3i + 5i – 6i = 2i.
b) $\left( {3 - \sqrt
{ - 4} } \right)\left( {2 + \sqrt { - 9} } \right)$
Solution:
$\left( {3 - \sqrt { - 4} } \right)\left( {2 + \sqrt { - 9}
} \right)$
Or, $\left( {3 - \sqrt { - 4} } \right)\left( {2 + \sqrt { -
9} } \right)$ = $\left( {3 - \sqrt { - 1{\rm{*}}4} } \right) + \left( {2 +
\sqrt { - 1{\rm{*}}9} } \right)$.
= $\left( {3 - \sqrt {{{\rm{i}}^2}{\rm{*}}{2^2}} }
\right)\left( {2 + \sqrt {{{\rm{i}}^2}{\rm{*}}{3^2}} } \right)$ = (3 – 2i)(2 +
3i) = 6 + 9i – 4i – 6i2.
= 6 + 5i – 6(-1) = 6 + 5i + 6 = 12 + 5i.
c) $\sqrt{ - 16}
$.$\sqrt { - 1} $
Solution:
$\sqrt{ - 16} $.$\sqrt { - 1} $
Or, $\sqrt{ - 16} $.$\sqrt { - 1} $
= $\sqrt { - 1{\rm{*}}16} $.$\sqrt { - 1} $
= $\sqrt {{{\rm{i}}^2}{\rm{*}}{4^2}} .\sqrt {{{\rm{i}}^2}} $
= 4i.i
= 4i2
= 4(-1)
= -4
d) 3i2 +
i3 + 9i4 – i7
Solution:
3i2 + i3 + 9i4 –
i7
= 3(-1) + i2.i + 9(i2)2 –
(i2)3.i = -3 + (-1).i + 9(-1)2 – (-1)3.i
= -3 – I + 9.1 – (-1).i = -3 – I + 9 + i = 6.
e) $\frac{1}{{\rm{i}}}
- \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}}
Solution:
$\frac{1}{{\rm{i}}} - \frac{1}{{{{\rm{i}}^2}}} +
\frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}}
Or, $\frac{1}{{\rm{i}}} - \frac{1}{{{{\rm{i}}^2}}} +
\frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}} = \frac{1}{{\rm{i}}} -
\frac{1}{{ - 1}} + \frac{1}{{{{\rm{i}}^2}.{\rm{i}}}} - \frac{1}{{{{\left(
{{{\rm{i}}^2}} \right)}^2}}}$.
= $\frac{1}{{\rm{i}}} + 1 - \frac{1}{{\rm{i}}} -
\frac{1}{{{{\left( { - 1} \right)}^2}}}$
= $\frac{1}{{\rm{i}}} + 1 - \frac{1}{{\rm{i}}} - 1$ = 0
f) $\frac{1}{{\rm{i}}}
+ \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} +
\frac{1}{{{{\rm{i}}^4}}}$
Solution:
Or, $\frac{1}{{\rm{i}}} + \frac{1}{{{{\rm{i}}^2}}} +
\frac{1}{{{{\rm{i}}^3}}} + \frac{1}{{{{\rm{i}}^4}}}$
= $\frac{1}{{\rm{i}}} + \frac{1}{{ - 1}} +
\frac{1}{{{{\rm{i}}^2}.{\rm{i}}}} + \frac{1}{{{{\left( {{{\rm{i}}^2}}
\right)}^2}}}$
= $\frac{1}{{\rm{i}}} - 1 + \frac{1}{{ - 1.{\rm{i}}}} +
\frac{1}{{{{\left( { - 1} \right)}^2}}}$
= $\frac{1}{{\rm{i}}} - 1 - \frac{1}{{\rm{i}}} + 1$
= 0.
4) Prove that:
a) (1 + i)4${\left(
{1 + \frac{1}{{\rm{i}}}} \right)^4}$=16
Solution:
LHS = (1 + i)4${\left( {1 + \frac{1}{{\rm{i}}}}
\right)^4}$= (1 + i)4$\frac{{{{\left( {{\rm{i}} + 1}
\right)}^4}}}{{{{\rm{i}}^4}}}{\rm{\:
}}$
= $\frac{{{{\left( {1 + {\rm{i}}} \right)}^8}}}{{{{\left(
{{{\rm{i}}^2}} \right)}^2}}}$ = $\frac{{{{\left[ {{{\left( {1 + {\rm{i}}}
\right)}^2}} \right]}^4}}}{{{{\left( { - 1} \right)}^2}}}{\rm{\: }}$=
$\frac{{{{\left( {1 + 2{\rm{i}} + {{\rm{i}}^2}} \right)}^4}}}{1}$
= $\frac{{{{\left( {1 + 2{\rm{i}} - 1} \right)}^4}}}{1}$ =
(2i)4 = 16i4 = 16.(i2)2 =
16.(-1)2 = 16 = R.H.S.
b) ${(1 -
{i^3})^6}{\left( {1 - \frac{1}{{{i^3}}}} \right)^6} = 64$
Solution:
5) Find the real
value of x and y if:
a) x + iy =
(2-3i)(3-2i)
Solution:
(x + iy) = (2 – 3i)(3 – 2i) = 6 – 4i – 9i + 6i2 =
6 – 13i – 6 = -13i
X + iy = 0 – 13i
So,x = 0 and y= -13.
b) (x-1)i + (yy+1) =
(1+i)(4-3i)
Solution:
(x – 1)I + (y + 1) = (1 + i)(4 – 3i)
(y + 1) + (x – 1)I = 4 – 3i + 4i – 3i2
(y + 1) + (x – 1)I = 4 + I – 3(-1)
(y + 1) + (x – 1)I = 4 + I + 3.
(y + 1) + (x – 1)I = 7 + i
Hence, y + 1 = 7 and x – 1 = 1
So, x = 2 and y = 6.
6) Show that $\frac{{3
+ 2i}}{{2 - 5i}} + \frac{{3 - 2i}}{{2 + 5i}}$ is purely a number.
Solution:
Or, $\frac{{\left( {3 + 2{\rm{i}}} \right)\left( {2 +
5{\rm{i}}} \right) + \left( {3 - 2{\rm{i}}} \right)\left( {2 - 5{\rm{i}}}
\right)}}{{\left( {2 - 5{\rm{i}}} \right)\left( {2 + 5{\rm{i}}} \right)}}$
= 6 + 15i + 4i + 10i2 + 6 – 15i – 4i + 10i2
= 12 + 20i2
= 12 + 20(-1) = 12 – 20 = -8.
Hence, the given expression is purely a real number.