Comple Number Exercise 6.1 | Basic Mathematics Solution [NEB UPDATED]

Exercise 6.1

1) Evaluate: 

Solution:

a)      (1,0)2 = 12 = 1

b)      (1,0)3 = 13 = 1

c)       (0,1)5 = i5 = (i2)2.i = (-1)2.i = 1.i = i

d)      (0,i)11 = i11 = (i2)5.i = -1.-I = -i.

2) Find the values of x and y in each of the following:

Solution:

a) (x,y) = (2 + 3,3 + 2) = (5,5). So, x = 5 , y = 5.

b) (x,y) = (2 – 2,1 – 1) = (0,0). So, x = 0 , y = 0.

c) (x,y) = (2,3) – (3,2) = (2 – 3,3 – 2) = (-1,1). So, x = -1 , y = 1.

d) (2,3) = (1,1) + (x + y) = (1 + x,1 + y)

Here, 2 = 1 + x, 3 = 1 + y

So, x = 1 and y = 2.

e) (x,y) = (1,1).(2,3)

(1 + i).(2 + 3i) = 2 + 3i + 2i + 3i2 = - 1 + 5i

So, x = -1 and y = 5.

f) (x.y) = $\frac{{\left( {1,1} \right)}}{{\left( {3,4} \right)}}{\rm{\: }}$

Or, x + iy = $\frac{{\left( {1+i} \right)}}{{\left( {3+ 4i} \right)}}{\rm{\: }}$ * $\frac{{\left( {3-4i} \right)}}{{\left( {3-4i} \right)}}{\rm{\: }}$

= $\frac{{\left( {7- i} \right)}}{{\left( {9+16} \right)}}{\rm{\: }}$

 = $\frac{{\left( {7- i} \right)}}{{\left( 25 \right)}}{\rm{\: }}$                                

= 7/25 + i(-1/25)

So, x =  7/25, y = -1/25

 

3) Simplify: 

a) $\sqrt{ - 9} $ + $\sqrt { - 25} $ – $\sqrt { - 36} $

Solution:

$\sqrt{ - 9} $ + $\sqrt { - 25} $ – $\sqrt { - 36} $

Or, $\sqrt{ - 9} $ + $\sqrt { - 25} $ – $\sqrt { - 36} $

= $\sqrt { - 1{\rm{*}}9} $ + $\sqrt { - 1{\rm{*}}25} $ – $\sqrt { - 1{\rm{*}}36} $.

= $\sqrt {{{\rm{i}}^2}{\rm{*}}{3^2}} $ + $\sqrt {{{\rm{i}}^2}{\rm{*}}{5^2}} $ – $\sqrt {{{\rm{i}}^2}{\rm{*}}{6^2}} $

= 3i + 5i – 6i = 2i. 

b) $\left( {3 - \sqrt { - 4} } \right)\left( {2 + \sqrt { - 9} } \right)$

Solution:

$\left( {3 - \sqrt { - 4} } \right)\left( {2 + \sqrt { - 9} } \right)$

Or, $\left( {3 - \sqrt { - 4} } \right)\left( {2 + \sqrt { - 9} } \right)$ = $\left( {3 - \sqrt { - 1{\rm{*}}4} } \right) + \left( {2 + \sqrt { - 1{\rm{*}}9} } \right)$.

= $\left( {3 - \sqrt {{{\rm{i}}^2}{\rm{*}}{2^2}} } \right)\left( {2 + \sqrt {{{\rm{i}}^2}{\rm{*}}{3^2}} } \right)$ = (3 – 2i)(2 + 3i) = 6 + 9i – 4i – 6i2.

= 6 + 5i – 6(-1) = 6 + 5i + 6 = 12 + 5i. 

c) $\sqrt{ - 16} $.$\sqrt { - 1} $

Solution:

$\sqrt{ - 16} $.$\sqrt { - 1} $

Or, $\sqrt{ - 16} $.$\sqrt { - 1} $

= $\sqrt { - 1{\rm{*}}16} $.$\sqrt { - 1} $

= $\sqrt {{{\rm{i}}^2}{\rm{*}}{4^2}} .\sqrt {{{\rm{i}}^2}} $

= 4i.i

= 4i2

= 4(-1)

= -4 

d) 3i2 + i3 + 9i4 – i7

Solution:

3i2 + i3 + 9i4 – i7

= 3(-1) + i2.i + 9(i2)2 – (i2)3.i = -3 + (-1).i + 9(-1)2 – (-1)3.i

= -3 – I + 9.1 – (-1).i = -3 – I + 9 + i = 6. 

e) $\frac{1}{{\rm{i}}} - \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}}

Solution:

$\frac{1}{{\rm{i}}} - \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}}

Or, $\frac{1}{{\rm{i}}} - \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} - \frac{1}{{{{\rm{i}}^4}}} = \frac{1}{{\rm{i}}} - \frac{1}{{ - 1}} + \frac{1}{{{{\rm{i}}^2}.{\rm{i}}}} - \frac{1}{{{{\left( {{{\rm{i}}^2}} \right)}^2}}}$.

= $\frac{1}{{\rm{i}}} + 1 - \frac{1}{{\rm{i}}} - \frac{1}{{{{\left( { - 1} \right)}^2}}}$

= $\frac{1}{{\rm{i}}} + 1 - \frac{1}{{\rm{i}}} - 1$ = 0 

f) $\frac{1}{{\rm{i}}} + \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} + \frac{1}{{{{\rm{i}}^4}}}$

Solution:

Or, $\frac{1}{{\rm{i}}} + \frac{1}{{{{\rm{i}}^2}}} + \frac{1}{{{{\rm{i}}^3}}} + \frac{1}{{{{\rm{i}}^4}}}$

= $\frac{1}{{\rm{i}}} + \frac{1}{{ - 1}} + \frac{1}{{{{\rm{i}}^2}.{\rm{i}}}} + \frac{1}{{{{\left( {{{\rm{i}}^2}} \right)}^2}}}$

= $\frac{1}{{\rm{i}}} - 1 + \frac{1}{{ - 1.{\rm{i}}}} + \frac{1}{{{{\left( { - 1} \right)}^2}}}$

= $\frac{1}{{\rm{i}}} - 1 - \frac{1}{{\rm{i}}} + 1$

= 0.

 

4) Prove that:

a) (1 + i)4${\left( {1 + \frac{1}{{\rm{i}}}} \right)^4}$=16

Solution:

LHS = (1 + i)4${\left( {1 + \frac{1}{{\rm{i}}}} \right)^4}$= (1 + i)4$\frac{{{{\left( {{\rm{i}} + 1} \right)}^4}}}{{{{\rm{i}}^4}}}{\rm{\: }}$                           

= $\frac{{{{\left( {1 + {\rm{i}}} \right)}^8}}}{{{{\left( {{{\rm{i}}^2}} \right)}^2}}}$ = $\frac{{{{\left[ {{{\left( {1 + {\rm{i}}} \right)}^2}} \right]}^4}}}{{{{\left( { - 1} \right)}^2}}}{\rm{\: }}$= $\frac{{{{\left( {1 + 2{\rm{i}} + {{\rm{i}}^2}} \right)}^4}}}{1}$

= $\frac{{{{\left( {1 + 2{\rm{i}} - 1} \right)}^4}}}{1}$ = (2i)4 = 16i4 = 16.(i2)2 = 16.(-1)2 = 16 = R.H.S.

b) ${(1 - {i^3})^6}{\left( {1 - \frac{1}{{{i^3}}}} \right)^6} = 64$

Solution:

 

5) Find the real value of x and y if:

a) x + iy = (2-3i)(3-2i)

Solution:

(x + iy) = (2 – 3i)(3 – 2i) = 6 – 4i – 9i + 6i2 = 6 – 13i – 6 = -13i

X + iy = 0 – 13i

So,x = 0 and y= -13. 

b) (x-1)i + (yy+1) = (1+i)(4-3i)

Solution:

(x – 1)I + (y + 1) = (1 + i)(4 – 3i)

(y + 1) + (x – 1)I = 4 – 3i + 4i – 3i2

(y + 1) + (x – 1)I = 4 + I – 3(-1)

(y + 1) + (x – 1)I = 4 + I + 3.

(y + 1) + (x – 1)I = 7 + i

Hence, y + 1 = 7 and x – 1 = 1

So, x = 2 and y = 6.

 

6) Show that $\frac{{3 + 2i}}{{2 - 5i}} + \frac{{3 - 2i}}{{2 + 5i}}$ is purely a number.

Solution:

Or, $\frac{{\left( {3 + 2{\rm{i}}} \right)\left( {2 + 5{\rm{i}}} \right) + \left( {3 - 2{\rm{i}}} \right)\left( {2 - 5{\rm{i}}} \right)}}{{\left( {2 - 5{\rm{i}}} \right)\left( {2 + 5{\rm{i}}} \right)}}$

= 6 + 15i + 4i + 10i2 + 6 – 15i – 4i + 10i2

= 12 + 20i2

= 12 + 20(-1) = 12 – 20 = -8.

Hence, the given expression is purely a real number.

Getting Info...

2 comments

  1. its very good
  2. its very good
Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.