Solution of Triangle
Exercise 7.1
1. (i) The angles of a triangle are 105° and
15°. Find the ratio of its sides.
Solution:
In $\Delta $ABCm Let A =
105°, B = 15° Then C = 180 – (A + B) = 180 – (105+15) = 60°.
Now, we have,
Or,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{{\rm{sin}}105^{\circ} }} =
\frac{{\rm{b}}}{{{\rm{sin}}15^{\circ} }} =
\frac{{\rm{c}}}{{{\rm{sin}}60^{\circ} }}$
Or,
$\frac{{\rm{a}}}{{\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$ = $\frac{{\rm{b}}}{{\frac{{\sqrt
3 - 1}}{{2\sqrt 2 }}}}$ =
Or,
$\frac{{\rm{a}}}{{\sqrt 3 + 1}}$ = $\frac{{\rm{b}}}{{\sqrt 3 - 1}}$
= $\frac{{\rm{c}}}{{\sqrt 6 }}$
So, a : b : c = $\left(
{\sqrt 3 + 1} \right):\left( {\sqrt 3 - 1} \right):\sqrt 6 $
(ii). If A = 45°, B = 60°, show that a:c = 2 :
$\left( {\sqrt 3 + 1} \right)$
Solution:
Here, A = 45°, B = 60°.
So, C = 180 – (A + B) =
180 – (45 + 60) = 75°.
To show: a : c = 2 :
$\left( {\sqrt 3 + 1} \right)$
Since, we have,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{{\rm{sin}}45^{\circ} }}$ =
$\frac{{\rm{c}}}{{{\rm{sin}}75^{\circ} }}$
Or,
$\frac{{\rm{a}}}{{\frac{1}{{\sqrt 2 }}}}$ = $\frac{{\rm{c}}}{{\frac{{\sqrt
3 + 1}}{{2\sqrt 2 }}}}$
Or, $\frac{{\rm{a}}}{2}$
= $\frac{{\rm{c}}}{{\sqrt 3 + 1}}$
So, a : c = 2 : $\left(
{\sqrt 3 + 1} \right)$
(iii) If one angle of the triangle is 60° and
the ratio of the other two is 1:3, find all the angles and the ratio of the
sides.
Solution:
Here, In $\Delta $ABC,
A = 60° and B:C = 1:3
So, B = K, C = 3K.
We have, A + B + C = 180
Or, 60 + K + 3K = 180
Or, 4K = 120°
So, k = 30°
So, A = 60°
B = 30°
C = 90°.
And,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or, $\frac{{\rm{a}}}{{\frac{{\sqrt
3 }}{2}}} = \frac{{\rm{b}}}{{\frac{1}{2}}} = \frac{{\rm{c}}}{1}$
Or,
$\frac{{\rm{a}}}{{\sqrt 3 }} = \frac{{\rm{b}}}{1} = \frac{{\rm{c}}}{2}$
Hence, a : b : c =
$\sqrt 3 $ : 1 : 2 and A = 60°, B = 30°, C = 90°.
(iv).The angles of a triangle are in the ratio
2:3:7. Prove that the sides are in the ratio of $\sqrt 2 $ : 2 : $\left( {\sqrt
3 + 1} \right)$.
Solution:
Here in ∆ABC,
A : B : C = 2 : 3 : 7
A = 2K, B = 3K and C =
7K
We have, A + B + C = 180
Or, 2K + 3K + 7K = 180
So, k = 15°
So, A = 30°
B = 45°
C = 105°.
And,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{{\rm{sin}}30^{\circ} }} =
\frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}105^{\circ}
}}$
Or,
$\frac{{\rm{a}}}{{\frac{1}{2}}} = \frac{{\rm{b}}}{{\frac{1}{{\sqrt 2 }}}} =
\frac{{\rm{c}}}{{\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
Or,
$\frac{{\rm{a}}}{{\sqrt 2 }} = \frac{{\rm{b}}}{2} = \frac{{\rm{c}}}{{\sqrt
3 + 1}}$
Hence, a : b : c = $\sqrt
2 $ : 2 : $\left( {\sqrt 3 + 1} \right)$
(v). If cos A = $\frac{4}{5}$, cosB =
$\frac{3}{5}$, find a:b:c.
Solution:
Here, cos A =
$\frac{4}{5}$, cosB = $\frac{3}{5}$
So, sinA =
$\frac{3}{5}$, sin B = $\frac{4}{5}$.
To find: a : b : c.
Now, sinC = sin(A + B)
[A + B + C = 180°]
= sinA.cosB + cosA.sinB
= $\frac{3}{5}{\rm{*}}\frac{3}{5} + \frac{4}{5}{\rm{*}}\frac{4}{5} =
\frac{9}{{25}} + \frac{{16}}{2}$ = 1
So, sinC = 1
SO, C = 90°.
We have,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{\frac{3}{5}}} = \frac{{\rm{b}}}{{\frac{4}{5}}} =
\frac{{\rm{c}}}{1}$
Or, $\frac{{\rm{a}}}{3}
= \frac{{\rm{b}}}{4} = \frac{{\rm{c}}}{5}{\rm{\: }}$
So, a : b : c = 3 : 4 :
5.
2. (i). Given a = 2, b = $\sqrt 2 $, c =$\sqrt 3
$ + 1, solve the triangle.
Solution:
Given, a = 2, b = $\sqrt
2 $, c =$\sqrt 3 $ + 1
To find: A, B, C.
Now,
cosA =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = $\frac{{2
+ {{\left( {\sqrt 3 + 1} \right)}^2} - 4}}{{2.\sqrt 2 .\left( {\sqrt
3 + 1} \right)}}$
= $\frac{{2 + 3 + 2\sqrt
3 + 1 - 4}}{{2.\sqrt 2 .\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2 + 2\sqrt 3
}}{{2.\sqrt 2 \left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2\left( {1 +
\sqrt 3 } \right)}}{{2.\sqrt 2 .\left( {\sqrt 3 + 1} \right)}}$
= $\frac{1}{{\sqrt 2 }}$
= cos45°.
Again.
Cos B =
$\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ =
$\frac{{{{\left( {\sqrt 3 + 1} \right)}^2} + 4 - 2}}{{2.\left( {\sqrt
3 + 1} \right).2}}$
= $\frac{{3 + 2\sqrt
3 + 1 + 4 - 2}}{{4.\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{6 + 2\sqrt 3
}}{{4.\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2\sqrt 3
\left( {\sqrt 3 + 1} \right)}}{{4\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{\sqrt 3 }}{2}$
= cos30°.
(ii). If a = 3 + $\sqrt 3 $, b = $2\sqrt 3 $, c
=$\sqrt 6 $, solve the triangle.
Solution:
Given, a = 3 + $\sqrt 3
$, b = $2\sqrt 3 $, c =$\sqrt 6 $
To find: A, B, C.
Now,
cosA =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ =
$\frac{{{{\left( {2\sqrt 3 } \right)}^2} + {{\left( {\sqrt 6 } \right)}^2} -
{{\left( {3 + \sqrt 3 } \right)}^2}}}{{2.2.\sqrt 3 ..\sqrt 6 }}$
= $\frac{{12 + 6 - 9 -
6\sqrt 3 - 3}}{{4{\rm{*}}\sqrt {18} }}$
= $\frac{{6 - 6\sqrt 3
}}{{4{\rm{*}}3\sqrt 2 }}$
= $\frac{{6\left( {1 -
\sqrt 3 } \right)}}{{12\sqrt 2 }}$
= $\frac{{ - \left(
{\sqrt 3 - 1} \right)}}{{2\sqrt 2 }}$ = cos105°.
So, A = 105°.
Again.
Cos B =
$\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ = $\frac{{6
+ \left( {9 + 6\sqrt 3 + 3} \right) - 12}}{{2.\sqrt 6 .\left( {3 + \sqrt
3 } \right)}}$
= $\frac{{6 + 6\sqrt 3
}}{{2\sqrt 6 \left( {3 + \sqrt 3 } \right)}}$
= $\frac{{6(1 + \sqrt
{3)} }}{{2.\sqrt 6 .\sqrt 3 .\left( {1 + \sqrt 3 } \right)}}$
= $\frac{3}{{\sqrt {18}
}}$
= $\frac{3}{{3\sqrt 2
}}$
= $\frac{1}{{\sqrt 2 }}$
= cos45°.
So, B = 45°.
And C = 180 – (A + B) =
180 – (105 + 45) = 30°
Hence, A = 105°, B =
45°, C = 30°.
(iii) If three sides of the triangle are
proportional to 2 : $\sqrt 6 $ : $\sqrt 3 $ + 1 find all the angles.
Solution:
Here, In $\Delta $ABC,
we have,
a : b : c = 2 : $\sqrt 6
$ : $\sqrt 3 $ + 1
So, a = 2K, b = $\sqrt 6
$K, c = $\left( {\sqrt 3 + 1} \right){\rm{K}}$
To find, A, B, C.
Now, cosA =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ =
$\frac{{6{{\rm{K}}^2} + \left( {3 + 2\sqrt 3 + 1} \right){{\rm{K}}^2} -
4{{\rm{K}}^2}}}{{2.\sqrt 6 {\rm{K}}.\left( {\sqrt 3 + 1}
\right){\rm{K}}}}$
= $\frac{{6 + 3 + 2\sqrt
3 + 1 - 4}}{{2\sqrt 6 .\left( {\sqrt 3 + 1} \right)}}$ = $\frac{{6
+ 2\sqrt 3 }}{{2.\sqrt 6 .\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2\sqrt 3
\left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 .\left( {\sqrt 3 + 1}
\right)}}$ = $\frac{1}{{\sqrt 2 }}$ = cos 45°.
So, A = 45°.
Again.
Cos B =
$\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ =
$\frac{{\left( {3 + 2\sqrt 3 + 1} \right){{\rm{K}}^2} + 4{{\rm{K}}^2} -
6{{\rm{K}}^2}}}{{2.\left( {\sqrt 3 + 1} \right){\rm{K}}.2{\rm{K}}}}$
= $\frac{{3 + 2\sqrt
3 + 1 + 4 - 6}}{{4\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2 + 2\sqrt 3
}}{{4\left( {\sqrt 3 + 1} \right)}}$
= $\frac{{2\left( {1 +
\sqrt 3 } \right)}}{{4\left( {1 + \sqrt 3 } \right)}}$
= $\frac{1}{2}$ =
cos60°.
So, B = 60°.
And C = 180 – (A + B) =
180 – (45 + 60) = 75°
Hence, A = 45°, B = 60°,
C = 75°.
3. (i) If C = 30°, B =
45°, C = 6$\sqrt 2 $. Solve the triangle.
Solution: C = 30°, B = 45°, C = 6$\sqrt 2 $
To find: a, b, A
Now, A = 180 – (B + C) =
180 – (45 + 30) = 105°.
And,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{{\rm{sin}}105^{\circ} }} =
\frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} =
\frac{{\rm{c}}}{{{\rm{sin}}30^{\circ} }}$
Or,
$\frac{{\rm{a}}}{{\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}} =
\frac{{\rm{b}}}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$
Or,
$\frac{{\rm{a}}}{{\sqrt 3 + 1}} = \frac{{\rm{b}}}{2} = \frac{{6\sqrt 2
}}{{\sqrt 2 }}$ [c = 6$\sqrt 2 $]
So, a = $\frac{{6\sqrt 2
}}{{\sqrt 2 }}\left( {\sqrt 3 + 1} \right)$ = 6($\sqrt 3 $ + 1) and b =
$\frac{{6\sqrt 2 }}{{\sqrt 2 }}.2$ = 12.
Hence, A = 105°, a =
6($\sqrt 3 $ + 1), b = 12.
(ii) If A = 60°, B = 75°, C = 2$\sqrt 3 $, solve
the triangle.
Solution: A = 60°, B = 75°, C = 2$\sqrt 3 $
To find: b, c, C
Now, C = 180 – (A + B) =
180 – (60 + 75) = 45°.
And,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or, $\frac{{2\sqrt 3
}}{{{\rm{sin}}60^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}75^{\circ} }} =
\frac{{\rm{c}}}{{{\rm{sin}}45^{\circ} }}$
Or, $\frac{{2\sqrt 3
}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\rm{b}}}{{\frac{{\sqrt 3 +
1}}{{2.\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{{\sqrt 2 }}}}$
Or, $\frac{{2\sqrt 3
}}{{\sqrt 3 .\sqrt 2 }} = \frac{{\rm{b}}}{{\sqrt 3 + 1}} =
\frac{{\rm{c}}}{2}$
Or, $\sqrt 2 $ =
$\frac{{\rm{b}}}{{\sqrt 3 + 1}}$ = $\frac{{\rm{c}}}{2}$.
So, C = 45°, b = $\sqrt
6 + \sqrt 2 $, c = 2$\sqrt 2 $.
(iii) If A = 30°, B = 45°, b = 2.Solve the
triangle.
Solution: A = 30°, B = 45°, b = 2
To find: a, c, C
Now, C = 180 – (A + B) =
180 – (30 + 45) = 105°.
And,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{{\rm{a}}}{{{\rm{sin}}30^{\circ} }} =
\frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} =
\frac{{\rm{c}}}{{{\rm{sin}}105^{\circ} }}$
Or,
$\frac{{\rm{a}}}{{\frac{1}{2}}} = \frac{2}{{\frac{1}{{\sqrt 2 }}}} =
\frac{{\rm{c}}}{{\frac{{\sqrt 3 + 1}}{{2.\sqrt 2 }}}}$
Or,
$\frac{{\rm{a}}}{{\sqrt 2 }} = \frac{2}{2} = \frac{{\rm{c}}}{{\sqrt 3 +
1}}$
Or,
$\frac{{\rm{a}}}{{\sqrt 2 }}$ = $1$ = $\frac{{\rm{c}}}{{\sqrt 3 + 1}}$.
So, a = $\sqrt 2 $, c =
$\sqrt 3 + 1$.
Hence, C = 105°, a =
$\sqrt 2 $, c = $\sqrt 3 $ + 1.
4. (i) If a = 2, b = 4, c = 60°.Find A and B.
Solution:
Here, a = 2, b = 4, c =
60°.
To find: A and B.
We have, cosC =
$\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
Or, $\frac{1}{2}$ =
$\frac{{4 + 16 - {{\rm{c}}^2}}}{{2.2.4}}$ [ C = 60°]
Or, 8 = 20 – c2.
Or, c2 =
12
So, c = 2$\sqrt 3 $.
Now,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{2}{{{\rm{sinA}}}} = \frac{4}{{{\rm{sinB}}}} = \frac{{2\sqrt 3
}}{{\frac{{\sqrt 3 }}{2}}}$ [c = $2\sqrt 3 $ and
C = 60°]
Or,
$\frac{2}{{{\rm{sinA}}}}$ = $\frac{4}{{{\rm{sinB}}}}$ = 4
Now, sinA =
$\frac{1}{2}$à A = 30° and sinB = 1 à B = 90°.
Hence, A = 30°, B = 90°.
(ii) Two sides of triangle are $\sqrt 3 $ -
1 and $\sqrt 3 $ - 1 and the included angle is 60°, solve the triangle.
Solution:
Here, b = $\sqrt 3 $ -
1, c = $\sqrt 3 $ + 1, A = 60°
To find : a, B, C.
We have, cosA =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$
Or, $\frac{1}{2}$ =
$\frac{{\left( {3 - 2\sqrt 3 + 1} \right) + \left( {3 + 2\sqrt 3 +
1} \right) - {{\rm{a}}^2}}}{{2.\left( {\sqrt 3 - 1{\rm{\: }}}
\right)\left( {\sqrt 3 + 1} \right)}}$
Or, 3 – 1 = 8 – a2.
Or, a2 =
6.
So, a = $\sqrt 6 $.
Now,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} =
\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or, $\frac{{\sqrt 6
}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\sqrt 3 - 1{\rm{\: }}}}{{{\rm{sinB}}}}
= \frac{{\sqrt 3 + 1{\rm{\: }}}}{{{\rm{sinC}}.}}$
Or, $2\sqrt 2 $ =
$\frac{{\sqrt 3 - 1{\rm{\: }}}}{{{\rm{sinB}}}}$ = $\frac{{\sqrt 3 +
1{\rm{\: }}}}{{{\rm{sinC}}}}$
So, sinB = $\frac{{\sqrt
3 - 1{\rm{\: }}}}{{2.\sqrt 2 }}$ = sin15° [165° is not
possible]
So, B = 15°
And, sinC =
$\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$ = sin75° or sin105°.
So, C = 105°
[c = 75°, not possible in this case]
Hence, a = $\sqrt 6 $, B
= 15°, C = 105°.
(iii) Given a = $\sqrt {57} $, A = 60° $\Delta $
= 2$\sqrt 3 $. Find b and c.
Solution:
Here, a = $\sqrt {57} $,
$\Delta $ = 2$\sqrt 3 $, A = 60°
To find: b and c.
Since, $\Delta $ =
$\frac{1}{2}$ bc.sinA.
Or, 2$\sqrt 3 $ =
$\frac{1}{2}$ bc. $\frac{{\sqrt 3 }}{2}$ [sinA = sin60° =
$\frac{{\sqrt 3 }}{2}$]
So, bc = 8 …(i)
Also, cosA =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$
Or, $\frac{1}{2}$ =
$\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - 57}}{{2.8}}$ [bc = 8]
Or, 8 = b2 +
c2 – 57.
Or, b2 +
c2 – 65 = 0
Or, b2 +
$\frac{{64}}{{{{\rm{b}}^2}}}$ - 65 = 0 [c =
$\frac{8}{{\rm{b}}}$]
Or, b4 –
65b2 + 64 = 0
Or. b4– 64b2 –
b2 + 64 = 0
Or, b2(b2 –
64) – 1(b2 – 64) = 0
Or, (b2 –
64)(b2 – 1) =0
So, b = 1, 8.
Or, c = 8.1 [from(i)]
Hence, b = 1 or 8 and c
= 8 or 1.
5. Given:
(i) a = 3, b = 3$\sqrt 3 $, A = 30°
Solution:
Here, a = 3, b = 3$\sqrt
3 $, A = 30°
To find: c, B, C.
Now,
$\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$
Or,
$\frac{3}{{{\rm{sin}}30^{\circ} }} = \frac{{3\sqrt 3 }}{{{\rm{sinB}}}}$
Or, sinB = $\frac{{\sqrt
3 }}{2}$ [sin30 = $\frac{1}{2}$]
So, B = 60° or 120°.
(Ambiguous case).
Now,
a. When B = 60°.
C = 180 – (A + B) = 180
– (30 + 60) = 90°
Again,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{3}{{\frac{1}{2}}} = \frac{{\rm{c}}}{1}$à c = 6.
So, C = 90°, c = 6, B =
60°.
b. When B = 120°.
C = 180 – (A + B) = 180
– (30 + 120) = 30°
Again,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{3}{{\frac{1}{2}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$à c = 3.
So, B = 120°, C = 30°, c
= 3.
Hence, the two solutions
are, B = 60°, C = 90°, c = 6 and B =120°, C = 30°, c = 3.
(ii) a=2, b=$\sqrt 3 $ + 1, A = 45°.
Solution:
Here, a = 2, b = $\sqrt
3 $ + 1, A = 45°
To find: c, B, C.
Now,
$\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$
Or,
$\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\sqrt 3 + 1}}{{{\rm{sinB}}}}$
Or, sinB = $\frac{{\sqrt
3 + 1}}{{2\sqrt 2 }}$ = sin75° or sin105°
So, B = 75° or 105°.
(Ambiguous case).
Now,
a.
When B = 75°.
C = 180 – (A + B) = 180
– (45 + 75) = 60°
Again,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{{\sqrt 3 }}{2}}}$à
2$\sqrt 2 $ = $\frac{{2{\rm{C}}}}{{\sqrt 3 }}$.
So, c = $\sqrt 6 $
So, B = 75°, C = 60°, c
= $\sqrt 6 $.
b.
When B = 105°.
C = 180 – (A + B) = 180
– (45 + 105) = 30°
Again,
$\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$à c = $\sqrt
2 $.
So, B = 105°, C = 30°, c
= $\sqrt 2 $.
Hence, the two solutions
are, B = 75°, C = 60°, c = $\sqrt 6 $ and B =105°, C = 30°, c = $\sqrt 2 $.
(iii) A = 30°, a = 6, b = 4 (Take 19°30’ = 1/3
and sin 49°30’ =3/4)
Solution:
Here, A = 30°, a = 6, b
= 4
To find: B, C, c
Now,
$\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$
Or,
$\frac{6}{{\frac{1}{2}}} = \frac{4}{{{\rm{sinB}}}}$
Or, 12 =
$\frac{4}{{{\rm{sinB}}}}$
Or, sinB = $\frac{1}{3}$
= sin19° 30’ (given)
So, B = 19° 30’. (No two
solutions)
Now,
C = 180 – (A + B) = 180
– (30° + 19°30’) = 130°30’
Again.
$\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{c}}}{{{\rm{sinC}}}}$
Or,
$\frac{6}{{\frac{1}{2}}}$ = $\frac{{\rm{c}}}{{{\rm{sin}}130^{\circ}
{{30}^{\rm{'}}}}}$
Or, 12 = $\frac{{\rm{c}}}{{\frac{3}{4}}}$
[sin 130°30’ = sin 49°30’ = $\frac{3}{4}$] Given
Or, c = 9.
Hence, B = 19°30’, C = 130°30’, c = 9