Solution of Triangle Exercise: 8.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Table of Contents

Solution of Triangle

Exercise 7.1

1. (i) The angles of a triangle are 105° and 15°. Find the ratio of its sides.

Solution:

In $\Delta $ABCm Let A = 105°, B = 15° Then C = 180 – (A + B) = 180 – (105+15) = 60°.

Now, we have,

Or, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{{\rm{sin}}105^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}15^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}60^{\circ} }}$

Or, $\frac{{\rm{a}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}}$ = $\frac{{\rm{b}}}{{\frac{{\sqrt 3  - 1}}{{2\sqrt 2 }}}}$ =

Or, $\frac{{\rm{a}}}{{\sqrt 3  + 1}}$ = $\frac{{\rm{b}}}{{\sqrt 3  - 1}}$ = $\frac{{\rm{c}}}{{\sqrt 6 }}$

So, a : b : c = $\left( {\sqrt 3  + 1} \right):\left( {\sqrt 3  - 1} \right):\sqrt 6 $

 

(ii). If A = 45°, B = 60°, show that a:c = 2 : $\left( {\sqrt 3  + 1} \right)$

Solution:

Here, A = 45°, B = 60°.

So, C = 180 – (A + B) = 180 – (45 + 60) = 75°.

To show: a : c = 2 : $\left( {\sqrt 3  + 1} \right)$

Since, we have, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{{\rm{sin}}45^{\circ} }}$ = $\frac{{\rm{c}}}{{{\rm{sin}}75^{\circ} }}$

Or, $\frac{{\rm{a}}}{{\frac{1}{{\sqrt 2 }}}}$ = $\frac{{\rm{c}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}}$

Or, $\frac{{\rm{a}}}{2}$ = $\frac{{\rm{c}}}{{\sqrt 3  + 1}}$

So, a : c = 2 : $\left( {\sqrt 3  + 1} \right)$

 

(iii) If one angle of the triangle is 60° and the ratio of the other two is 1:3, find all the angles and the ratio of the sides.

Solution:

Here, In $\Delta $ABC,

A = 60° and B:C = 1:3

So, B = K, C = 3K.

We have, A + B + C = 180

Or, 60 + K + 3K = 180

Or, 4K = 120°

So, k = 30°

So, A = 60°

B = 30°

C = 90°.

And, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\rm{b}}}{{\frac{1}{2}}} = \frac{{\rm{c}}}{1}$

Or, $\frac{{\rm{a}}}{{\sqrt 3 }} = \frac{{\rm{b}}}{1} = \frac{{\rm{c}}}{2}$

Hence, a : b : c = $\sqrt 3 $ : 1 : 2 and A = 60°, B = 30°, C = 90°.

 

(iv).The angles of a triangle are in the ratio 2:3:7. Prove that the sides are in the ratio of $\sqrt 2 $ : 2 : $\left( {\sqrt 3  + 1} \right)$.

Solution:

Here in ∆ABC,

A : B : C = 2 : 3 : 7

A = 2K, B = 3K and C = 7K

We have, A + B + C = 180

Or, 2K + 3K + 7K = 180

So, k = 15°

So, A = 30°

B = 45°

C = 105°.

And, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{{\rm{sin}}30^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}105^{\circ} }}$

Or, $\frac{{\rm{a}}}{{\frac{1}{2}}} = \frac{{\rm{b}}}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}}$

Or, $\frac{{\rm{a}}}{{\sqrt 2 }} = \frac{{\rm{b}}}{2} = \frac{{\rm{c}}}{{\sqrt 3  + 1}}$

Hence, a : b : c = $\sqrt 2 $ : 2 : $\left( {\sqrt 3  + 1} \right)$

 

(v). If cos A = $\frac{4}{5}$, cosB = $\frac{3}{5}$, find a:b:c.

Solution:

Here, cos A = $\frac{4}{5}$, cosB = $\frac{3}{5}$

So, sinA = $\frac{3}{5}$, sin B = $\frac{4}{5}$.

To find: a : b : c.

Now, sinC = sin(A + B)                    [A + B + C = 180°]

= sinA.cosB + cosA.sinB = $\frac{3}{5}{\rm{*}}\frac{3}{5} + \frac{4}{5}{\rm{*}}\frac{4}{5} = \frac{9}{{25}} + \frac{{16}}{2}$ = 1

So, sinC = 1

SO, C = 90°.

We have, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{\frac{3}{5}}} = \frac{{\rm{b}}}{{\frac{4}{5}}} = \frac{{\rm{c}}}{1}$

Or, $\frac{{\rm{a}}}{3} = \frac{{\rm{b}}}{4} = \frac{{\rm{c}}}{5}{\rm{\: }}$

So, a : b : c = 3 : 4 : 5.

 

2. (i). Given a = 2, b = $\sqrt 2 $, c =$\sqrt 3 $ + 1, solve the triangle.

Solution:

Given, a = 2, b = $\sqrt 2 $, c =$\sqrt 3 $ + 1

To find: A, B, C.

Now,

cosA = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = $\frac{{2 + {{\left( {\sqrt 3  + 1} \right)}^2} - 4}}{{2.\sqrt 2 .\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2 + 3 + 2\sqrt 3  + 1 - 4}}{{2.\sqrt 2 .\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2 + 2\sqrt 3 }}{{2.\sqrt 2 \left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2\left( {1 + \sqrt 3 } \right)}}{{2.\sqrt 2 .\left( {\sqrt 3  + 1} \right)}}$

= $\frac{1}{{\sqrt 2 }}$ = cos45°.

Again.

Cos B = $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ = $\frac{{{{\left( {\sqrt 3  + 1} \right)}^2} + 4 - 2}}{{2.\left( {\sqrt 3  + 1} \right).2}}$

= $\frac{{3 + 2\sqrt 3  + 1 + 4 - 2}}{{4.\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{6 + 2\sqrt 3 }}{{4.\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2\sqrt 3 \left( {\sqrt 3  + 1} \right)}}{{4\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{\sqrt 3 }}{2}$ = cos30°.

 

(ii). If a = 3 + $\sqrt 3 $, b = $2\sqrt 3 $, c =$\sqrt 6 $, solve the triangle.

Solution:

Given, a = 3 + $\sqrt 3 $, b = $2\sqrt 3 $, c =$\sqrt 6 $

To find: A, B, C.

Now,

cosA = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = $\frac{{{{\left( {2\sqrt 3 } \right)}^2} + {{\left( {\sqrt 6 } \right)}^2} - {{\left( {3 + \sqrt 3 } \right)}^2}}}{{2.2.\sqrt 3 ..\sqrt 6 }}$

= $\frac{{12 + 6 - 9 - 6\sqrt 3  - 3}}{{4{\rm{*}}\sqrt {18} }}$

= $\frac{{6 - 6\sqrt 3 }}{{4{\rm{*}}3\sqrt 2 }}$

= $\frac{{6\left( {1 - \sqrt 3 } \right)}}{{12\sqrt 2 }}$

= $\frac{{ - \left( {\sqrt 3  - 1} \right)}}{{2\sqrt 2 }}$ = cos105°.

So, A = 105°.

Again.

Cos B = $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ = $\frac{{6 + \left( {9 + 6\sqrt 3  + 3} \right) - 12}}{{2.\sqrt 6 .\left( {3 + \sqrt 3 } \right)}}$

= $\frac{{6 + 6\sqrt 3 }}{{2\sqrt 6 \left( {3 + \sqrt 3 } \right)}}$

= $\frac{{6(1 + \sqrt {3)} }}{{2.\sqrt 6 .\sqrt 3 .\left( {1 + \sqrt 3 } \right)}}$

= $\frac{3}{{\sqrt {18} }}$

= $\frac{3}{{3\sqrt 2 }}$

= $\frac{1}{{\sqrt 2 }}$ = cos45°.

So, B = 45°.

And C = 180 – (A + B) = 180 – (105 + 45) = 30°

Hence, A = 105°, B = 45°, C = 30°.

 

(iii) If three sides of the triangle are proportional to 2 : $\sqrt 6 $ : $\sqrt 3 $ + 1 find all the angles.

Solution:

Here, In $\Delta $ABC, we have,

a : b : c = 2 : $\sqrt 6 $ : $\sqrt 3 $ + 1

So, a = 2K, b = $\sqrt 6 $K, c = $\left( {\sqrt 3  + 1} \right){\rm{K}}$

To find, A, B, C.

Now, cosA = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$ = $\frac{{6{{\rm{K}}^2} + \left( {3 + 2\sqrt 3  + 1} \right){{\rm{K}}^2} - 4{{\rm{K}}^2}}}{{2.\sqrt 6 {\rm{K}}.\left( {\sqrt 3  + 1} \right){\rm{K}}}}$

= $\frac{{6 + 3 + 2\sqrt 3  + 1 - 4}}{{2\sqrt 6 .\left( {\sqrt 3  + 1} \right)}}$ = $\frac{{6 + 2\sqrt 3 }}{{2.\sqrt 6 .\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2\sqrt 3 \left( {\sqrt 3  + 1} \right)}}{{2\sqrt 6 .\left( {\sqrt 3  + 1} \right)}}$ = $\frac{1}{{\sqrt 2 }}$ = cos 45°.

So, A = 45°.

Again.

Cos B = $\frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{2{\rm{ca}}}}$ = $\frac{{\left( {3 + 2\sqrt 3  + 1} \right){{\rm{K}}^2} + 4{{\rm{K}}^2} - 6{{\rm{K}}^2}}}{{2.\left( {\sqrt 3  + 1} \right){\rm{K}}.2{\rm{K}}}}$

= $\frac{{3 + 2\sqrt 3  + 1 + 4 - 6}}{{4\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2 + 2\sqrt 3 }}{{4\left( {\sqrt 3  + 1} \right)}}$

= $\frac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {1 + \sqrt 3 } \right)}}$

= $\frac{1}{2}$ = cos60°.

So, B = 60°.

And C = 180 – (A + B) = 180 – (45 + 60) = 75°

Hence, A = 45°, B = 60°, C = 75°.

 

3. (i) If C = 30°, B = 45°, C = 6$\sqrt 2 $. Solve the triangle.

Solution: C = 30°, B = 45°, C = 6$\sqrt 2 $

To find: a, b, A

Now, A = 180 – (B + C) = 180 – (45 + 30) = 105°.

And, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{{\rm{sin}}105^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}30^{\circ} }}$

Or, $\frac{{\rm{a}}}{{\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}}} = \frac{{\rm{b}}}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$

Or, $\frac{{\rm{a}}}{{\sqrt 3  + 1}} = \frac{{\rm{b}}}{2} = \frac{{6\sqrt 2 }}{{\sqrt 2 }}$   [c = 6$\sqrt 2 $]

So, a = $\frac{{6\sqrt 2 }}{{\sqrt 2 }}\left( {\sqrt 3  + 1} \right)$ = 6($\sqrt 3 $ + 1) and b = $\frac{{6\sqrt 2 }}{{\sqrt 2 }}.2$ = 12.

Hence, A = 105°, a = 6($\sqrt 3 $ + 1), b = 12.

 

(ii) If A = 60°, B = 75°, C = 2$\sqrt 3 $, solve the triangle.

Solution: A = 60°, B = 75°, C = 2$\sqrt 3 $

To find: b, c, C

Now, C = 180 – (A + B) = 180 – (60 + 75) = 45°.

And, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{2\sqrt 3 }}{{{\rm{sin}}60^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}75^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}45^{\circ} }}$

Or, $\frac{{2\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\rm{b}}}{{\frac{{\sqrt 3  + 1}}{{2.\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{{\sqrt 2 }}}}$

Or, $\frac{{2\sqrt 3 }}{{\sqrt 3 .\sqrt 2 }} = \frac{{\rm{b}}}{{\sqrt 3  + 1}} = \frac{{\rm{c}}}{2}$

Or, $\sqrt 2 $ = $\frac{{\rm{b}}}{{\sqrt 3  + 1}}$ = $\frac{{\rm{c}}}{2}$.

So, C = 45°, b = $\sqrt 6  + \sqrt 2 $, c = 2$\sqrt 2 $.

 

(iii) If A = 30°, B = 45°, b = 2.Solve the triangle.

Solution: A = 30°, B = 45°, b = 2

To find: a, c, C

Now, C = 180 – (A + B) = 180 – (30 + 45) = 105°.

And, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\rm{a}}}{{{\rm{sin}}30^{\circ} }} = \frac{{\rm{b}}}{{{\rm{sin}}45^{\circ} }} = \frac{{\rm{c}}}{{{\rm{sin}}105^{\circ} }}$

Or, $\frac{{\rm{a}}}{{\frac{1}{2}}} = \frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{{\sqrt 3  + 1}}{{2.\sqrt 2 }}}}$

Or, $\frac{{\rm{a}}}{{\sqrt 2 }} = \frac{2}{2} = \frac{{\rm{c}}}{{\sqrt 3  + 1}}$

Or, $\frac{{\rm{a}}}{{\sqrt 2 }}$ = $1$ = $\frac{{\rm{c}}}{{\sqrt 3  + 1}}$.

So, a = $\sqrt 2 $, c = $\sqrt 3  + 1$.

Hence, C = 105°, a = $\sqrt 2 $, c = $\sqrt 3 $ + 1.

 

4. (i) If a = 2, b = 4, c = 60°.Find A and B.

Solution:

Here, a = 2, b = 4, c = 60°.

To find: A and B.

We have, cosC = $\frac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$

Or, $\frac{1}{2}$ = $\frac{{4 + 16 - {{\rm{c}}^2}}}{{2.2.4}}$    [ C = 60°]

Or, 8 = 20 – c2.

Or, c2 = 12

So, c = 2$\sqrt 3 $.

Now, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{2}{{{\rm{sinA}}}} = \frac{4}{{{\rm{sinB}}}} = \frac{{2\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}}}$      [c = $2\sqrt 3 $ and C = 60°]

Or, $\frac{2}{{{\rm{sinA}}}}$ = $\frac{4}{{{\rm{sinB}}}}$ = 4

Now, sinA = $\frac{1}{2}$à A = 30° and sinB = 1 à B = 90°.

Hence, A = 30°, B = 90°.

 

(ii) Two sides of triangle are $\sqrt 3 $ - 1 and $\sqrt 3 $ - 1 and the included angle is 60°, solve the triangle.

Solution:

Here, b = $\sqrt 3 $ - 1, c = $\sqrt 3 $ + 1, A = 60°

To find : a, B, C.

We have, cosA = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$

Or, $\frac{1}{2}$ = $\frac{{\left( {3 - 2\sqrt 3  + 1} \right) + \left( {3 + 2\sqrt 3  + 1} \right) - {{\rm{a}}^2}}}{{2.\left( {\sqrt 3  - 1{\rm{\: }}} \right)\left( {\sqrt 3  + 1} \right)}}$

Or, 3 – 1 = 8 – a2.

Or, a2 = 6.

So, a = $\sqrt 6 $.

Now, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{{\sqrt 6 }}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\sqrt 3  - 1{\rm{\: }}}}{{{\rm{sinB}}}} = \frac{{\sqrt 3  + 1{\rm{\: }}}}{{{\rm{sinC}}.}}$

Or, $2\sqrt 2 $ = $\frac{{\sqrt 3  - 1{\rm{\: }}}}{{{\rm{sinB}}}}$ = $\frac{{\sqrt 3  + 1{\rm{\: }}}}{{{\rm{sinC}}}}$

So, sinB = $\frac{{\sqrt 3  - 1{\rm{\: }}}}{{2.\sqrt 2 }}$ = sin15°   [165° is not possible]

So, B = 15°

And, sinC = $\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}$ = sin75° or sin105°.

So, C = 105°   [c = 75°, not possible in this case]

Hence, a = $\sqrt 6 $, B = 15°, C = 105°.

 

(iii) Given a = $\sqrt {57} $, A = 60° $\Delta $ = 2$\sqrt 3 $. Find b and c.

Solution:

Here, a = $\sqrt {57} $, $\Delta $ = 2$\sqrt 3 $, A = 60°

To find: b and c.

Since, $\Delta $ = $\frac{1}{2}$ bc.sinA.

Or, 2$\sqrt 3 $ = $\frac{1}{2}$ bc. $\frac{{\sqrt 3 }}{2}$    [sinA = sin60° = $\frac{{\sqrt 3 }}{2}$]

So, bc = 8 …(i)

Also, cosA = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}}}{{2{\rm{bc}}}}$

Or, $\frac{1}{2}$ = $\frac{{{{\rm{b}}^2} + {{\rm{c}}^2} - 57}}{{2.8}}$    [bc = 8]

Or, 8 = b2 + c2 – 57.

Or, b2 + c2 – 65 = 0

Or, b2 + $\frac{{64}}{{{{\rm{b}}^2}}}$ - 65 = 0    [c = $\frac{8}{{\rm{b}}}$]

Or, b4 – 65b2 + 64 = 0

Or. b4– 64b– b2 + 64 = 0

Or, b2(b2 – 64) – 1(b2 – 64) = 0

Or, (b2 – 64)(b2 – 1) =0

So, b = 1, 8.

Or, c = 8.1 [from(i)]

Hence, b = 1 or 8 and c = 8 or 1.

 

5. Given:

(i) a = 3, b = 3$\sqrt 3 $, A = 30°

Solution:

Here, a = 3, b = 3$\sqrt 3 $, A = 30°

To find: c, B, C.

Now, $\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$

Or, $\frac{3}{{{\rm{sin}}30^{\circ} }} = \frac{{3\sqrt 3 }}{{{\rm{sinB}}}}$

Or, sinB = $\frac{{\sqrt 3 }}{2}$    [sin30 = $\frac{1}{2}$]

So, B = 60° or 120°. (Ambiguous case).

Now,

a. When B = 60°.

C = 180 – (A + B) = 180 – (30 + 60) = 90°

Again, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{3}{{\frac{1}{2}}} = \frac{{\rm{c}}}{1}$à c = 6.

So, C = 90°, c = 6, B = 60°.

 

 

b. When B = 120°.

C = 180 – (A + B) = 180 – (30 + 120) = 30°

Again, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{3}{{\frac{1}{2}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$à c = 3.

So, B = 120°, C = 30°, c = 3.

Hence, the two solutions are, B = 60°, C = 90°, c = 6 and B =120°, C = 30°, c = 3.

 

(ii) a=2, b=$\sqrt 3 $ + 1, A = 45°.

Solution:

Here, a = 2, b = $\sqrt 3 $ + 1, A = 45°

To find: c, B, C.

Now, $\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$

Or, $\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\sqrt 3  + 1}}{{{\rm{sinB}}}}$

Or, sinB = $\frac{{\sqrt 3  + 1}}{{2\sqrt 2 }}$ = sin75° or sin105° 

So, B = 75° or 105°. (Ambiguous case).

Now,

a.

When B = 75°.

C = 180 – (A + B) = 180 – (45 + 75) = 60°

Again, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{{\sqrt 3 }}{2}}}$à 2$\sqrt 2 $ = $\frac{{2{\rm{C}}}}{{\sqrt 3 }}$.

So, c = $\sqrt 6 $

So, B = 75°, C = 60°, c = $\sqrt 6 $.

 

b.

When B = 105°.

C = 180 – (A + B) = 180 – (45 + 105) = 30°

Again, $\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{2}{{\frac{1}{{\sqrt 2 }}}} = \frac{{\rm{c}}}{{\frac{1}{2}}}$à c = $\sqrt 2 $.

So, B = 105°, C = 30°, c = $\sqrt 2 $.

Hence, the two solutions are, B = 75°, C = 60°, c = $\sqrt 6 $ and B =105°, C = 30°, c = $\sqrt 2 $.

 

(iii) A = 30°, a = 6, b = 4 (Take 19°30’ = 1/3 and sin 49°30’ =3/4)

Solution:

Here, A = 30°, a = 6, b = 4

To find: B, C, c

Now, $\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{b}}}{{{\rm{sinB}}}}$

Or, $\frac{6}{{\frac{1}{2}}} = \frac{4}{{{\rm{sinB}}}}$

Or, 12 = $\frac{4}{{{\rm{sinB}}}}$

Or, sinB = $\frac{1}{3}$ = sin19° 30’ (given)

So, B = 19° 30’. (No two solutions)

Now,

C = 180 – (A + B) = 180 – (30° + 19°30’) = 130°30’

Again. $\frac{{\rm{a}}}{{{\rm{sinA}}}}$ = $\frac{{\rm{c}}}{{{\rm{sinC}}}}$

Or, $\frac{6}{{\frac{1}{2}}}$ = $\frac{{\rm{c}}}{{{\rm{sin}}130^{\circ} {{30}^{\rm{'}}}}}$

Or, 12 = $\frac{{\rm{c}}}{{\frac{3}{4}}}$   [sin 130°30’ = sin 49°30’ = $\frac{3}{4}$] Given

Or, c = 9.

Hence, B = 19°30’, C = 130°30’, c = 9

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.

Frequently Asked Questions

What is Nepali Educate?

Nepali Educate is an online platform dedicated to providing educational resources, support, and information for students, parents, and educators in Nepal.

What services does Nepali Educate offer?

Nepali Educate offers a range of services, including educational articles, exam preparation resources, career guidance, and information about educational institutions in Nepal.

How can I access the resources on Nepali Educate?

All resources on Nepali Educate are accessible through the website. Simply visit the website and explore the various sections, including articles, exam tips, and career guidance.

Are the resources on Nepali Educate free?

Yes, the majority of the resources on Nepali Educate are available for free. However, there might be some premium or additional services that require a subscription or payment.

How can I contribute to Nepali Educate?

Nepali Educate welcomes contributions from educators, professionals, and students. If you have valuable insights, educational content, or resources to share, you can contact us through the website for contribution opportunities.

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.