Anti-Derivatives Exercise: 19.3 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 19.3

Find the indefinite integral of

1.(i) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {1 - {{\rm{x}}^2}} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {1 - {{\rm{x}}^2}} }}$

Put x = sinθ.

dx = cosθ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{cos}}\theta .{\rm{d}}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}$ = $\mathop \smallint \nolimits \frac{{{\rm{cos}}\theta }}{{{\rm{cos}}\theta }}$.dθ = $\mathop \smallint \nolimits {\rm{d}}\theta $ = θ + c.

So, I = sin–1x + c.

 

(ii) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}\sqrt {9 - {{\rm{x}}^2}} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}\sqrt {9 - {{\rm{x}}^2}} }}$

Put x = 3sinθ  3cosθ.dθ

I = $\mathop \smallint \nolimits \frac{{3.{\rm{cos}}\theta .{\rm{d}}\theta }}{{9{{\sin }^2}\theta \sqrt {9 - 9{{\sin }^2}\theta } }}$ = $\mathop \smallint \nolimits \frac{{3{\rm{cos}}\theta .{\rm{d}}\theta }}{{9{{\sin }^2}\theta \sqrt {9\left( {1 - {{\sin }^2}\theta } \right)} }}$

= $\mathop \smallint \nolimits \frac{{3{\rm{cos}}\theta .{\rm{d}}\theta }}{{9{{\sin }^2}\theta \sqrt {9{{\cos }^2}\theta } }}$

= $\mathop \smallint \nolimits \frac{{3{\rm{cos}}\theta .{\rm{d}}\theta }}{{9{{\sin }^2}\theta .3{\rm{cos}}\theta {\rm{\: }}}}$

= $\frac{1}{9}$$\mathop \smallint \nolimits {\rm{cose}}{{\rm{c}}^2}\theta .{\rm{d}}\theta $ = $\frac{1}{9}$(–cotθ) + c

= $ - \frac{1}{9}\frac{{{\rm{cos}}\theta }}{{{\rm{sin}}\theta }}{\rm{\: }}$ + c

= $ - \frac{1}{9}$$\frac{{\sqrt {1 - {{\sin }^2}\theta } }}{{{\rm{sin}}\theta }}$ + c.

= $ - \frac{1}{9}$$\frac{{\sqrt {1 - \frac{{{{\rm{x}}^2}}}{9}} }}{{\frac{{\rm{x}}}{3}}}{\rm{\: }}$ + c   (x = 3sinθ)

= $ - \frac{{\sqrt {9 - {{\rm{x}}^2}} }}{{9{\rm{x}}}}$ + c.

 

(iii) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\left( {{{\rm{a}}^2} - {{\rm{x}}^2}} \right)}^{\frac{3}{2}}}}}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\left( {{{\rm{a}}^2} - {{\rm{x}}^2}} \right)}^{\frac{3}{2}}}}}$

Put x = asinθ

dx = a.cosθ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{cos}}\theta .{\rm{d}}\theta }}{{{{\left( {{{\rm{a}}^2} - {{\rm{a}}^2}.{{\sin }^2}\theta } \right)}^{\frac{3}{2}}}}}$ = $\mathop \smallint \nolimits \frac{{{\rm{acos}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^3}.{{\cos }^3}\theta }}$

= $\frac{1}{{{{\rm{a}}^2}}}\mathop \smallint \nolimits {\sec ^2}\theta .{\rm{d}}\theta $ = $\frac{1}{{{{\rm{a}}^2}}}$tanθ + c = $\frac{1}{{{{\rm{a}}^2}}}$$\frac{{{\rm{sin}}\theta }}{{{\rm{cos}}\theta }}$ + c

= $\frac{1}{{{{\rm{a}}^2}}}.\frac{{{\rm{sin}}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}$ + c = $\frac{1}{{{{\rm{a}}^2}}}$. $\frac{{\frac{{\rm{x}}}{{\rm{a}}}}}{{\sqrt {1 - \frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}} }}$

= $\frac{{\rm{x}}}{{{{\rm{a}}^2}\left( {\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} } \right)}}$ + c.

 

(iv) $\mathop \smallint \nolimits \frac{{{{\rm{x}}^2}.{\rm{dx}}}}{{\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{{\rm{x}}^2}.{\rm{dx}}}}{{\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} }}$

Put x = asinθ

dx = a.cosθ.dθ

I = $\mathop \smallint \nolimits \frac{{{{\rm{a}}^2}.{{\sin }^2}\theta .{\rm{acos}}\theta .{\rm{d}}\theta }}{{\sqrt {{{\rm{a}}^2} - {{\rm{a}}^2}.{{\sin }^2}\theta } }}$ = $\mathop \smallint \nolimits \frac{{{{\rm{a}}^2}{{\sin }^2}\theta .{\rm{acos}}\theta .{\rm{d}}\theta }}{{\sqrt {{{\rm{a}}^2}\left( {1 - {{\sin }^2}\theta } \right)} }}$

= $\mathop \smallint \nolimits \frac{{{{\rm{a}}^2}.{{\sin }^2}\theta .{\rm{acos}}\theta .{\rm{d}}\theta }}{{\sqrt {{{\rm{a}}^2}.{{\cos }^2}\theta } }}$

 =$\mathop \smallint \nolimits \frac{{{{\rm{a}}^2}.{{\sin }^2}\theta .{\rm{acos}}\theta .{\rm{d}}\theta }}{{{\rm{a}}.{\rm{cos}}\theta }}$

=$\frac{{{{\rm{a}}^2}}}{2}\mathop \smallint \nolimits 2{\sin ^2}\theta .{\rm{d}}\theta $ = $\frac{{{{\rm{a}}^2}}}{2}\mathop \smallint \nolimits \left( {1 - {\rm{cos}}2\theta } \right).{\rm{d}}\theta $

= $\frac{{{{\rm{a}}^2}}}{2}\left[ {\theta  - \frac{{{\rm{sin}}2\theta }}{2}} \right]$ + c

= $\frac{{{{\rm{a}}^2}}}{2}\left[ {\theta  - \frac{{2{\rm{sin}}\theta .{\rm{cos}}\theta }}{2}} \right]$ + c

= $\frac{{{{\rm{a}}^2}}}{2}$$\left[ {\theta  - {\rm{sin}}\theta .{\rm{cos}}\theta } \right]$ + c

= $\frac{{{{\rm{a}}^2}}}{2}$$\left[ {\theta  - {\rm{sin}}\theta \sqrt {1 - {{\sin }^2}\theta } } \right]$ + c

= $\frac{{{{\rm{a}}^2}}}{2}$$\left[ {{{\sin }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}} - \frac{{\rm{x}}}{{\rm{a}}}\sqrt {1 - \frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}} } \right]$ + c

= $\frac{{{{\rm{a}}^2}}}{2}$sin–1$\frac{{\rm{x}}}{{\rm{a}}}$ – $\frac{1}{2}$ x$\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} $ + c.

 

2.(i) $\mathop \smallint \nolimits \frac{{\sqrt {{{\rm{x}}^2} - 9} }}{{\rm{x}}}$.dx

Solution:

Let I = $\mathop \smallint \nolimits \frac{{\sqrt {{{\rm{x}}^2} - 9} }}{{\rm{x}}}$.dx

Put x = 3secθ  dx = 3secθ.tanθ.dθ

I = $\mathop \smallint \nolimits \frac{{\sqrt {9{{\sec }^2}\theta  - 9} }}{{3{\rm{sec}}\theta }}$.3secθ.tanθ.dθ.

= $\mathop \smallint \nolimits \sqrt {9\left( {{{\sec }^2}\theta  - 1} \right)} $.tanθ.dθ

= $\mathop \smallint \nolimits \sqrt {9{{\tan }^2}\theta } $.tanθ.dθ

= 3.$\mathop \smallint \nolimits {\tan ^2}\theta .{\rm{d}}\theta $ = 3$\mathop \smallint \nolimits \left( {{{\sec }^2}\theta  - 1} \right).{\rm{d}}\theta $ = 3(tanθ – θ) + c

= 3.$\left[ {\frac{{\sqrt {{{\rm{x}}^2} - 9} }}{3} - {{\sec }^{ - 1}}\frac{{\rm{x}}}{3}} \right]$ + c = $\sqrt {{{\rm{x}}^2} - 9} $ – 3sec–1$\frac{{\rm{x}}}{3}$ + c.

 

(ii) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}.\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$.dx

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}.\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$.dx

Put x = a.secθ  dx = a.secθ.tanθ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^2}.{{\sec }^2}\theta \sqrt {{{\rm{a}}^2}{{\sec }^2}\theta  - {{\rm{a}}^2}} }}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^2}.{{\sec }^2}\theta \sqrt {{{\rm{a}}^2}({{\sec }^2}\theta  - 1)} }}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^2}.{{\sec }^2}\theta \sqrt {{{\rm{a}}^2}.{{\tan }^2}\theta } }}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^2}.{{\sec }^2}\theta .{\rm{atan}}\theta }}$

= $\frac{1}{{{{\rm{a}}^2}}}\mathop \smallint \nolimits {\rm{cos}}\theta $.dθ

= $\frac{1}{{{{\rm{a}}^2}}}$.sinθ + c

= $\frac{1}{{{{\rm{a}}^2}}}$.$\frac{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{{\rm{x}}}$ + c

= $\frac{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}{{{{\rm{a}}^2}{\rm{x}}}}$ + c.

 

(iii) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\left( {{{\rm{x}}^2} - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$.dx

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\left( {{{\rm{x}}^2} - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$.dx

Put x = a.secθ  dx = a.secθ.tanθ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\left( {{{\rm{a}}^2}.{{\sec }^2}\theta  - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\left\{ {{{\rm{a}}^2}\left( {{{\sec }^2}\theta  - 1} \right)} \right\}}^{\frac{3}{2}}}}}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\left( {{{\rm{a}}^2}.{{\tan }^2}\theta } \right)}^{\frac{3}{2}}}}}$

= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^3}.{{\tan }^3}\theta }}$

= $\frac{1}{{{{\rm{a}}^2}}}\mathop \smallint \nolimits {\rm{cot}}\theta .{\rm{cosec}}\theta $.dθ

= $ - \frac{1}{{{{\rm{a}}^2}}}$.cosecθ + c

= $ - \frac{1}{{{{\rm{a}}^2}}}$.$\frac{{\rm{x}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$ + c.

 

(iv) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {{{\rm{x}}^2} - 4} }}$.dx

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {{{\rm{x}}^2} - 4} }}$.dx

Put x = 2.secθ

dx = 2.secθ.tanθ.dθ

I = $\mathop \smallint \nolimits \frac{{2.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{\sqrt {4{{\sec }^2}\theta  - 4} }}$

= $\mathop \smallint \nolimits \frac{{2.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{2{\rm{tan}}\theta }}$

= $\mathop \smallint \nolimits {\rm{sec}}\theta $.dθ = log(secθ + tanθ) + c.

= log(secθ + $\sqrt {{{\sec }^2}\theta  - 1} $) + c

= log$\left( {\frac{{\rm{x}}}{2} + \sqrt {\frac{{{{\rm{x}}^2}}}{4} - 1} } \right)$ + c

= log$\left[ {\frac{{{\rm{x}} + \sqrt {{{\rm{x}}^2} - 4} }}{2}} \right]$ + c

= log(x + $\sqrt {{{\rm{x}}^2} - 4} $) – log2 + c = log (x + $\sqrt {{{\rm{x}}^2} - 4} $) + c.

 

(v) $\mathop \smallint \nolimits \frac{{{{\rm{x}}^3}{\rm{dx}}}}{{{{\left( {{{\rm{x}}^2} - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$.dx

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{{\rm{x}}^3}{\rm{dx}}}}{{{{\left( {{{\rm{x}}^2} - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$.dx

Put x = a.secθ

dx = a.secθ.tanθ.dθ

I = $\mathop \smallint \nolimits \frac{{{{\rm{a}}^3}.{{\sec }^3}\theta .{\rm{a}}.{\rm{sec}}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\left( {{{\rm{a}}^2}{{\sec }^2}\theta  - {{\rm{a}}^2}} \right)}^{\frac{3}{2}}}}}$

= $\mathop \smallint \nolimits \frac{{{{\rm{a}}^4}.{{\sec }^4}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\left\{ {{{\rm{a}}^2}\left( {{{\sec }^2}\theta  - 1} \right)} \right\}}^{\frac{3}{2}}}}}$

= $\mathop \smallint \nolimits \frac{{{{\rm{a}}^4}.{{\sec }^4}\theta .{\rm{tan}}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^3}.{{\tan }^3}{\rm{\: }}\theta }}$

= ${\rm{a}}\mathop \smallint \nolimits \frac{{\frac{1}{{{{\cos }^4}\theta }}}}{{{{\sin }^2}\theta .{{\cos }^2}\theta }}$.dθ

= ${\rm{a}}\mathop \smallint \nolimits \frac{1}{{{{\cos }^4}\theta }}.\frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}$.dθ

= ${\rm{a}}\mathop \smallint \nolimits \frac{1}{{{{\sin }^2}\theta .{{\cos }^2}\theta }}$.dθ

= ${\rm{a}}\mathop \smallint \nolimits \frac{{{{\sin }^2}\theta . + {{\cos }^2}\theta }}{{{{\sin }^2}\theta .{{\cos }^2}\theta }}$.dθ

 = ${\rm{a}}\mathop \smallint \nolimits [\frac{{{{\sin }^2}\theta }}{{{{\sin }^2}\theta .{{\cos }^2}\theta }} + \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta .{{\cos }^2}\theta }}].{\rm{d}}\theta $

= a$\mathop \smallint \nolimits ({\sec ^2}\theta  + {\rm{cose}}{{\rm{c}}^2}\theta )$.dθ = a[tanθ – cotθ] + c

= ${\rm{a}}\left[ {\frac{{\alpha \left( {\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} } \right)}}{{\rm{a}}} - \frac{{\rm{a}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}} \right]$ + c

= a. $\frac{{{{\rm{x}}^2} - {{\rm{a}}^2} - {{\rm{a}}^2}}}{{{\rm{a}}\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$ = $\frac{{{{\rm{x}}^2} - 2{{\rm{a}}^2}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$.

 

3.(i) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\left( {{{\rm{x}}^2} + {{\rm{a}}^2}} \right)}}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\left( {{{\rm{x}}^2} + {{\rm{a}}^2}} \right)}}$

Put x = atanθ.

dx = asec2θ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}}.{{\sec }^2}\theta .{\rm{d}}\theta }}{{{{\rm{a}}^2}{{\tan }^2}\theta  + {{\rm{a}}^2}}}$

= $\frac{1}{{\rm{a}}}\mathop \smallint \nolimits {\rm{d}}\theta \frac{{\theta  + {\rm{c}}}}{{\rm{a}}}$

= $\frac{1}{{\rm{a}}}$tan–1$\frac{{\rm{x}}}{{\rm{a}}}$ + c.

 

(ii) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}\sqrt {{{\rm{x}}^2} + 1} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{{\rm{x}}^2}\sqrt {{{\rm{x}}^2} + 1} }}$

Put x = tanθ  dx = sec2θ.dθ

dx = asec2θ.dθ

I = $\mathop \smallint \nolimits \frac{{.{{\sec }^2}\theta .{\rm{d}}\theta }}{{{{\tan }^2}\theta \sqrt {1 + {{\tan }^2}\theta } }}$

= $\mathop \smallint \nolimits \frac{{.{{\sec }^2}\theta .{\rm{d}}\theta }}{{{{\tan }^2}\theta {\rm{sec}}\theta }}$

 = $\mathop \smallint \nolimits \frac{{{\rm{sec}}\theta }}{{{{\tan }^2}\theta }}$.dθ

= $\mathop \smallint \nolimits {\rm{cosec}}\theta .{\rm{cot}}\theta .{\rm{d}}\theta $ = –cosecθ + c

= $\frac{{ - \sqrt {{{\rm{x}}^2} + 1} }}{{\rm{x}}}$ + c

 

(iii) $\mathop \smallint \nolimits \frac{{{{\rm{x}}^2}.{\rm{d}}\theta }}{{{{\tan }^2}\theta \sqrt {1 + {{\tan }^2}\theta } }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{{\rm{x}}^2}.{\rm{d}}\theta }}{{{{\tan }^2}\theta \sqrt {1 + {{\tan }^2}\theta } }}$

Put x = tanθ  dx = sec2θ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{ta}}{{\rm{n}}^2}.\theta .{{\sec }^2}\theta .{\rm{d}}\theta }}{{{{\left( {1 + {{\tan }^2}\theta } \right)}^2}}}$= $\mathop \smallint \nolimits \frac{{{{\tan }^2}\theta .{\rm{d}}\theta }}{{{{\sec }^2}\theta }}$

= $\mathop \smallint \nolimits {\sin ^2}\theta $.dθ

= $\frac{1}{2}\mathop \smallint \nolimits 2{\sin ^2}\theta $.dθ = $\frac{1}{2}\mathop \smallint \nolimits \left( {1 - {\rm{cos}}2\theta } \right)$.dθ

= $\frac{1}{2}\left[ {\theta  - \frac{{{\rm{sin}}2\theta }}{2}} \right]$ = $\frac{1}{2}\left( {\theta  - \frac{1}{2}{\rm{sin}}2\theta  = \frac{1}{2}\left( {\theta  - {\rm{sin}}\theta .{\rm{cos}}\theta } \right)} \right)$

= $\frac{1}{2}\left[ {{{\tan }^{ - 1}}{\rm{x}} - \frac{{\rm{x}}}{{\sqrt {1 + {{\rm{x}}^2}} }}.\frac{1}{{\sqrt {1 + {{\rm{x}}^2}} }}} \right]$ = $\frac{1}{2}$tan–1x $ - \frac{1}{2}$.$\frac{{\rm{x}}}{{1 + {{\rm{x}}^2}}}$ + c.

 

(iv) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{\sqrt {{{\rm{a}}^2} + {{\rm{x}}^2}} }}$

Put x = a.tanθ  dx = a.sec2θ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}}.{\rm{se}}{{\rm{c}}^2}\theta .{\rm{d}}\theta }}{{\sqrt {{\rm{a}} + {{\rm{a}}^2}{{\tan }^2}\theta } }}$= $\mathop \smallint \nolimits \frac{{{\rm{a}}.{{\sec }^2}\theta }}{{{\rm{a}}.{\rm{sec}}\theta }}$.dθ = $\mathop \smallint \nolimits {\rm{sec}}\theta .$dθ = log(secθ + tanθ) + c

= log$\left( {\frac{{\sqrt {{{\rm{x}}^2} + {{\rm{a}}^2}} }}{{\rm{a}}} + \frac{{\rm{x}}}{{\rm{a}}}} \right)$ + c = log$\left( {\frac{{{\rm{x}} + \sqrt {{{\rm{x}}^2} + {{\rm{a}}^2}} }}{{\rm{a}}}} \right)$ + c.

= log(x + $\sqrt {{{\rm{x}}^2} + {{\rm{a}}^2}} $) – loga + c = log(x + $\sqrt {{{\rm{x}}^2} + {{\rm{a}}^2}} $) + c.

 

(v) $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{\rm{x}}\sqrt {{{\rm{x}}^2} + 1} }}$

Solution:

Let I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{\rm{x}}\sqrt {{{\rm{x}}^2} + 1} }}$

Put x = tanθ  dx = sec2θ.dθ

Then $\sqrt {{{\rm{x}}^2} + 1} $ = $\sqrt {{{\tan }^2}\theta  + 1} $ = secθ.

I = $\mathop \smallint \nolimits \frac{{{\rm{dx}}}}{{{\rm{x}}\sqrt {{{\rm{x}}^2} + 1{\rm{\: }}} }}$= $\mathop \smallint \nolimits \frac{{{{\sec }^2}\theta .{\rm{d}}\theta }}{{{\rm{tan}}\theta .{\rm{sec}}\theta }}$. = $\mathop \smallint \nolimits \frac{1}{{{\rm{sin}}\theta }}.$dθ = $\mathop \smallint \nolimits {\rm{cosec}}\theta $.dθ

= log(cosecθ – cotθ) + c

= log$\left( {\frac{{\sqrt {{{\rm{x}}^2} + 1} }}{{\rm{x}}} - \frac{1}{{\rm{x}}}} \right)$ + c = log $\frac{{\sqrt {{{\rm{x}}^2} + 1}  - 1}}{{\rm{x}}}$ + c.

 

(vi) \[\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} \]

Solution:

Put y = tan–1x

Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{1}{{1 + {{\rm{x}}^2}}}$

Or, dy = $\frac{1}{{{{\left( {1 + {\rm{x}}} \right)}^2}}}$.dx

Above integral reduced to:

Or, $\mathop \smallint \nolimits {\rm{y}}$.dy = $\frac{{{{\rm{y}}^2}}}{2}$ + c

Putting the value if y,we get,

So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{{\left( {{{\tan }^{ - 1}}{\rm{x}}} \right)}^2}}}{2}$ + c.

 

4.(i) $\mathop \smallint \nolimits \sqrt {\frac{{{\rm{a}} + {\rm{x}}}}{{{\rm{a}} - {\rm{x}}}}} $.dx

Solution:

Let I = $\mathop \smallint \nolimits \sqrt {\frac{{{\rm{a}} + {\rm{x}}}}{{{\rm{a}} - {\rm{x}}}}} $.dx = $\mathop \smallint \nolimits \sqrt {\frac{{{\rm{a}} + {\rm{x}}}}{{{\rm{a}} - {\rm{x}}}}{\rm{*}}\frac{{{\rm{a}} + {\rm{x}}}}{{{\rm{a}} + {\rm{x}}}}} $ .dx = $\mathop \smallint \nolimits \frac{{{\rm{a}} + {\rm{x}}}}{{\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} }}$.dx

Put x = acosθ  dx =  asinθ.dθ

I = $\mathop \smallint \nolimits \frac{{{\rm{a}} + {\rm{acos}}\theta }}{{\sqrt {{{\rm{a}}^2} - {{\rm{a}}^2}.{{\cos }^2}\theta } }}$.(–asinθ).dθ

= $ - \mathop \smallint \nolimits \frac{{{\rm{a}}\left( {1 + {\rm{cos}}\theta } \right)}}{{\sqrt {{{\rm{a}}^2}\left( {1 - {{\cos }^2}\theta } \right)} }}$.asinθdθ

= $ - \mathop \smallint \nolimits \frac{{{\rm{a}}\left( {1 + {\rm{cos}}\theta } \right)}}{{\sqrt {{{\rm{a}}^2}{{\sin }^2}\theta } }}$.asinθdθ

= $ - \mathop \smallint \nolimits \frac{{{\rm{a}}\left( {1 + {\rm{cos}}\theta } \right).{\rm{asin}}\theta {\rm{d}}\theta }}{{{\rm{a}}.{\rm{sin}}\theta }}$ = $ - {\rm{a}}\mathop \smallint \nolimits \left( {1 + {\rm{cos}}\theta } \right)$.dθ

= –a[θ + sinθ] + c = –a $\left[ {{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}} + \sqrt {1 - {{\cos }^2}\theta } } \right]$ + c

= –a$\left[ {{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}} + \sqrt {1 - \frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}}} } \right]$ + c    (x = acosθ)

= –acos–1$\frac{{\rm{x}}}{{\rm{a}}}$–$\sqrt {{{\rm{a}}^2} - {{\rm{x}}^2}} $ + c.

 

(ii) $\mathop \smallint \nolimits \sqrt {\frac{{\rm{x}}}{{{\rm{a}} - {\rm{x}}}}} $.dx

Solution:

Let I = $\mathop \smallint \nolimits \sqrt {\frac{{\rm{x}}}{{{\rm{a}} - {\rm{x}}}}} $.dx

Put x = asin2θ  dx = a.2sinθ.cosθ.dθ

I = $\mathop \smallint \nolimits \sqrt {\frac{{{\rm{asi}}{{\rm{n}}^2}\theta }}{{{\rm{a}} - {\rm{asi}}{{\rm{n}}^2}\theta }}} $.2asinθ.cosθ.dθ

= $\sqrt {\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} $.2asinθ.cosθ.dθ = $\mathop \smallint \nolimits \frac{{{\rm{sin}}\theta }}{{{\rm{cos}}\theta }}$ .2a.sinθ.cosθ.dθ

= a$\mathop \smallint \nolimits 2{\sin ^2}\theta .{\rm{d}}\theta $ =  ${\rm{a}}\mathop \smallint \nolimits \left( {1 - {\rm{cos}}2\theta } \right)$.dθ

= a[θ – sinθ.cosθ] + c

Put x = a.sin2θ  sin2θ = $\frac{{\rm{x}}}{{\rm{a}}}$ So, sinθ= $\sqrt {\frac{{\rm{x}}}{{\rm{a}}}} $.

θ = sin–1$\sqrt {\frac{{\rm{x}}}{{\rm{a}}}} $ and cos θ = $\sqrt {1 - {{\sin }^2}\theta } $ = $\sqrt {1 - \frac{{\rm{x}}}{{\rm{a}}}} $

1 = a[θ – sinθ.cosθ] + c

= a$\left[ {{{\sin }^{ - 1}}\sqrt {\frac{{\rm{x}}}{{\rm{a}}}}  - \sqrt {\frac{{\rm{x}}}{{\rm{a}}}} \sqrt {\frac{{{\rm{a}} - {\rm{x}}}}{{\rm{a}}}} } \right]$ + c = a.sin–1$\sqrt {\frac{{\rm{x}}}{{\rm{a}}}} $ – $\sqrt {{\rm{x}}\left( {{\rm{a}} - {\rm{x}}} \right)} $ + c

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.