1. (i) Examine
whether the function f(x) = 15x2 – 14x + 1 is increasing or
decreasing at x=$\frac{2}{5}$ and x=$\frac{5}{2}$.
Solution:
Given f(x) = 15x2 – 14x + 1
f'(x) = 30x – 14
At x = $\frac{2}{5}$, f’(x) = 30.$\frac{2}{5}$ – 14 = 12 – 14
= – 2 < 0
At x = $\frac{5}{2}$, f’(x) = 30.$\frac{5}{2}$ – 14 = 75 –
14 = 61 > 0
So, given function is increasing at x = $\frac{5}{2}$ and decreasing
at x = $\frac{2}{5}$
(ii) Show that the
function f(x) = 2x3 – 24x + 15 is increasing at x=2 and decreasing
at x==$\frac{3}{2}$.
Solution:
Given f(x) = 2x3 – 24x + 15
f'(x) = 6x2 – 24.
At x = 3, f’(x) = 6.32 – 24 = 12 – 14 = 54 –
24 = 30 > 0.
At x = $\frac{3}{2}$, f’(x) = 6.${\left( {\frac{3}{2}}
\right)^2}$ – 24 = $\frac{{27 - 48}}{2}$ = $ - \frac{{21}}{2}$< 0
So, given function is increasing at x = 3 and decreasing at
x = $\frac{3}{2}$
2. (i) Test whether
the function f(x) =2x2 – 4x + 3 is increasing or decreasing on
both interval (1,4].
Solution:
Given f(x) = 2x2 – 4x + 3
f’(x) = 4x – 4
For every value in between,
(1,4], f’(x) > 0.
So, Given function is increasing on the interval (1,4].
(ii) Examine whether
the function f(x) = 16x – $\frac{{4{{\rm{x}}^3}}}{3}$ is increasing or
decreasing on the interval (–∞,–2).
Solution:
Given f(x) = 16x – $\frac{{4{{\rm{x}}^3}}}{3}$
f’(x) = 16 – 4x2.
For every value (–∞,–2), the function f’(x) < 0.
So, Given function is decreasing on the interval (–∞,–2).
(iii) Show that the
function f(x) = –x3 + 6x2 – 13x + 20 is
decreasing for all x ϵ R.
Solution:
Given f(x) = –x3 + 6x2 – 13x
+ 20
f’(x) = – 3x2 + 12x – 13
= – 3x2 + 12x – 12 – 1 = –3(x2 –
4x + 4) – 1
= –3(x – 2)2 – 1 is always negative for
every values of x ϵ R.
So, Given function is decreasing for all x ϵ R.
(iv) Show that the
function 4x – $\frac{9}{{\rm{x}}}$ + 6 is increasing for all x ϵ R except x =
0.
Solution:
Given f(x) = 4x – $\frac{9}{{\rm{x}}}$ + 6.
f’(x) = 4 + $\frac{9}{{{{\rm{x}}^2}}}$
f’(x) = 4 + $\frac{9}{{{{\rm{x}}^2}}}$ is always
positive except x = 0.
So, therefore function is increasing for all x ϵ R except x
= 0.
3. Find the interval
in which the following function are increasing or decreasing.
(i) f(x) = 3x2 –
6x + 5
Solution:
Given f(x) = 3x2 – 6x + 5
f’(x) = 6x – 6
Let 6x – 6 = 0 ⇒ x = 1
When x > 1, f’(x) > 0
When x < 1, f’(x) < 0
So, given function is increasing for (1,∞) and decreasing
for (–∞.1).
(ii) f(x) = x4 –
$\frac{1}{3}$x3
Solution:
Given f(x) = x4 – $\frac{1}{3}$x3
f’(x) = 4x3 – x2.
Let 4x3 – x2 = 0 ⇒
x2(4x – 1) = 0
When x = 0, or x = $\frac{1}{4}$.
When x < 0, f’(x) < 0.
When 0 < x <$\frac{1}{4}$, f’(x) < 0
When x >$\frac{1}{4}$, f’(x) > 0
So, given function is decreasing for $\left( { - {\rm{\infty
}},\frac{1}{4}} \right)$ and increasing for $\left( {\frac{1}{4},{\rm{\infty
}}} \right)$.
(iii) f(x) = 5x3-135x+22
Solution:
f(x) = 5x3-135x+22
f’(x )=15x2 – 135
Let 15x2 – 135 = 0 ⇒ x2 =
9 ⇒
x = ±3
When x <–3, f’(x) > 0
When –3 < x < 3, f’(x) < 0
When x > 3, f’(x) > 0
So, given function is increasing for $\left( { - {\rm{\infty
}},3} \right){\rm{U}}\left( {3,{\rm{\infty }}} \right)$ and decreasing for
$\left( { - 3,3} \right)$
(iv) f(x) = 6 + 12x +
3x2 – 2x2
Solution:
f(x) = 6 + 12x + 3x2 – 2x2
f'(x) = 12 + 6x – 6x2
Let 12 + 6x – 6x2 = 0
Or, x2 – x – 2 = 0
Or, x2 – 2x + x – 2 = 0
Or, x(x – 2) + 1 (x – 2) = 0
Or, (x – 2)(x + 1) = 0
Either, x = 2 or , x = –1
When x <–1, f’(x) < 0
When –1 < x < 2, f’(x) > 0
When x > 2, f’(x) < 0
So, given function is decreasing for $\left( { - {\rm{\infty
}}, - 1} \right){\rm{U}}\left( {2,{\rm{\infty }}} \right)$ and increasing for
$\left( { - 1,2} \right)$.
(v) f(x) = x3 –
12x
Solution:
f(x) = x3 – 12x
f'(x) = 3x2 – 12
Let 3x2 – 12 = 0 ⇒
x2 = 4 ⇒ x= ± 2.
When x <–2, f’(x) > 0.
When –2 < x < 2, f’(x) < 0
When x > 2, f’(x) > 0.
So, given function is increasing for $\left[ { - 3, - 2}
\right){\rm{U}}\left( {2,5} \right]$ and decreasing for $\left( { - 2,2}
\right)$.
4. Find the absolute
maximum and the absolute minimum values of the following function on the given
intervals:
(i) f(x) = 3x2 –
6x + 4 on [-1,2]
Solution:
Given f(x) = 3x2 – 6x + 4
f'(x) = 6x – 6
For, maximum or minimum f’(x) = 0
i.e. 6x – 6 = 0 ⇒ x = 1
When x = –1, f(x) = 3(–1)2– 6(–1) + 4 = 13
When, x = 2, f(x) = 3.22 – 6.2 + 4 = 4
When x = 1, f(x) = 3.12 – 6.1 + 4 = 1.
So, absolute maximum = 13, Absolute minimum = 1.
(ii) f(x) = 2x3 –
9x2 on [-2,4]
Solution:
Given f(x) = 2x3 – 9x2
f'(x) = 6x2 – 18x
For, maximum or minimum f’(x) = 0
i.e. 6x – 18x = 0
or, 6x(x – 3) = 0
When x = 0, or, x = 3.
When, x = –2, f(x) = 2.(–2)3 – 9*(–2)2 =
– 52
When x = 4, f(x) = 2.43 – 9.42 =
– 16.
When x = 0, f(x) = 0
When x = 3, f(x) = 2.33 – 9.32 =
– 27.
So, absolute maximum = 0, Absolute minimum = –52.
(iii) f(x) = x3-6x2+9x
on [0,5]
Solution:
Given: f(x) = x3-6x2+9x
f’(x) = 3x2 – 12x + 9
For, maximum or minimum f’(x) = 0
3x2 – 12x + 9 = 0
or, x2 – 4x + 3 = 0.
Either, x = 1 or x = 3,
When x = 0, f(x) = 03 – 6.02 +
9.0 = 0
When, x = 3, f(x) = 33 – 6.32 +
9.3 = 0
When x = 1, f(x) = 13 – 6.12 +
9.1 = 4.
When x = 5, f(x) = 53 – 6.52 +
9.5 = 20
When x = 3, f(x) = 2.33 – 9.32 =
– 27.
So, absolute maximum = 20, Absolute minimum = 0.
(iv) f(x)=2x3-15x2+36x+10
on [1,4]
Solution:
Given: f(x)=2x3-15x2+36x+10
f’(x) = 6x2 – 30x + 36
For, maximum or minimum f’(x) = 0
6x2 – 30x + 36 = 0
or, x2 – 5x + 6 = 0
or, (x – 1)(x – 5) = 0.
Either, x = 1 or x = 5,
When x = 1, f(x) = 2.13 – 15.13 +
36.1 + 10 = 33.
When, x = 4, f(x) = 2.43 – 15.42 +
36.4 + 10 = 42.
Since, 5 ∉$\left[ {1,4} \right]$.
So, absolute maximum = 42, Absolute minimum = 33.
5. Find the local
maxima and local minima and the point of inflection
(i) f(x) = 3x2 –
6x + 3
Solution:
f(x) = 3x2 – 6x + 3
f’(x) = 6x – 6.
f'’(x) = 6.
For maxima and minima, f’(x) = 0.
6x – 6 = 0
Or, 6x = 6 ⇒ x = 1.
At x = 1, f’’(x) = 6 > 0.
So, f(x) has minimum value at x =1.
Min. value = f(1) = 3 * (1)2 – 6 * 1 + 3 = 0
For all x, f’’(x) = 6 ≠ 0, so there is no point of
inflection.
(ii) f(x) = x3 –
12x + 8
Solution:
f(x) = x3 – 12x + 8
f’(x) = 3x2 – 12.
f'’(x) = 6x.
For maxima and minima, f’(x) = 0.
3x2 – 12 = 0.
3x2 = 12
Or, x2 = 3 –> x = ± 2.
At x = 2, f’’(x) = 6 * 2 = 12 > 0.
So, f(x) has minimum value at x = 2.
Min. value of f(2) = f(2) = (2)3 – 12*2 + 8
= –8.
Again, x = –2, f’’(x) = 6 * (–2) = –12 < 0.
So, f(x) has maximum value at x = –2.
Max. value of f(x) = f(–2) = (–2)3 – 12 *
(–2) + 8 = 24.
f'(x) = 0 if 6x = 0 ⇒ x = 0
So, x = 0 is the point of inflection.
(iii) f(x) = x3 –
6x2 + 3
Solution:
f(x) = x3 – 6x2 + 3
f’(x) = 3x2 – 12x.
f'’(x) = 6x – 12.
For maxima and minima, f’(x) = 0.
3x2 – 12x = 0.
3x(x – 4) = 0.
Either, 3x = 0 – ⇒ x = 0
Or, x – 4 ⇒ x = 4.
At x = 4, f’’(x) = 6 * 4 – 12 = 12 > 0.
So, f(x) has minimum value at x = 4.
Min. value = (4)3 – 6(4)2 +
3 = –29.
f'’(x) = 0 if 6x – 12 = 0
6x = 12 ⇒ x = 2
So, x = 2 is the point of inflection.
(iv) f(x) = 2x3 –
15x2 + 36x + 5
Solution:
f(x) = 2x3 – 15x2 + 36x + 5
f’(x) = 6x2 – 30x + 36
f'’(x) = 12x – 30.
For maxima and minima, f’(x) = 0.
Or, 6x2 – 30x + 36 = 0
Or, x2 – 5x + 6 = 0
Or, (x – 2)(x – 3) = 0
Either, x – 2 = 0, x ⇒ 2
Or, x – 3 = 0, x ⇒ 3.
At x = 2, f’’(x) = 12*2 – 30 = –6 > 0.
So, f(x) has maximum value at x = 2.
Max. value = 2.(3)3 – 15(2)2 +
36 * 2 + 5 = 33
At x = 3, f’’(x) = 12 * 3 – 30 = 6 > 0.
So, f(x) has minimum value at x = 3.
Min. value = 2(3)2 – 15(3)2 +
36 * 3 + 5 = 32
f’’(x) = 0 if 12x – 30 = 0
12x = 30 ⇒ x = $\frac{{30}}{{12}}$ =
$\frac{5}{2}$.
So, x = $\frac{5}{2}$ is the point of inflection.
(v) f(x) = 2x3 –
9x2 – 24x + 3
Solution:
f(x) = 2x3 – 9x2 – 24x + 3
f’(x) = 6x2 – 18x – 24.
f'’(x) = 12x – 18.
For maxima and minima, f’(x) = 0.
Or, 6x2 – 18x – 24. = 0
Or, x2 – 3x + 4 = 0
Or, (x – 4)(x + 1) = 0
Either, x – 4 = 0, x ⇒ 4
Or, x – 1 = 0, x ⇒ –1.
At x = 4, f’’(x) = 12*4 – 18 = 30 > 0.
So, f(x) has minimum value at x = 4.
Min. value = 2.(4)3 – 9(4)2 –
24(4)+ 3 = –109
At x = –1, f’’(x) = 12 * (–1) – 18 = –30 < 0.
So, f(x) has maximum value at x = –1.
Max. value = 2(–1)3 – 9(–1)2 –
24(–1) + 3 = 16.
f’’(x) = 0 if 12x – 18 = 0
12x = 18 ⇒ x = $\frac{{18}}{{12}}$ =
$\frac{3}{2}$.
So, x = $\frac{3}{2}$ is the point of inflection
(vi) f(x) = 4x3 –
15x2 + 12x + 7
Solution:
f(x) = 4x3 – 15x2 + 12x + 7
f’(x) = 12x2 – 30x + 12.
f'’(x) = 24x – 30.
For maxima and minima, f’(x) = 0.
Or, 12x2 – 30x + 12 = 0
Or, 2x2 – 5x + 2 = 0
Or, 2x2 – 4x – x + 2 = 0
Or, (x – 2)(2x – 1) = 0
Either, x – 2 = 0, x ⇒ 2
Or, 2x – 1 = 0, x ⇒ $\frac{1}{2}$.
At x = 2, f’’(x) = 24*2 – 30 = 18 > 0.
So, f(x) has minimum value at x = 2.
Min. value = 4.(2)3 – 15(2)2 +
12(2)+ 7 = 3
At x = $\frac{1}{2}$, f’’(x) = 24 * $\frac{1}{2}$– 30 = –18
< 0.
So, f(x) has maximum value at x = $\frac{1}{2}$.
Max. value = 4.${\left( {\frac{1}{2}} \right)^3} - 15.{\left(
{\frac{1}{2}} \right)^2} + 12.\left( {\frac{1}{2}} \right) + 7$ =
$\frac{{39}}{4}$.
f’’(x) = 0 if 24x – 30 = 0
24x = 30 ⇒ x = $\frac{5}{4}$.
So, x = $\frac{5}{4}$ is the point of inflection.
(vii) f(x) = 4x3 –
6x2 – 9x + 1 on the interval (-1,2)
Solution:
f(x) = 4x3 – 6x2 – 9x + 1
f’(x) = 12x2 – 12x – 9,
f'’(x) = 24x – 12.
For maxima and minima, f’(x) = 0.
Or, 12x2 – 12x – 9 = 0
Or, 4x2 – 4x – 3 = 0
Or, 4x2 – 6x + 2x – 3 = 0
Or, 2x(2x – 3) + 1(2x – 3) = 0
Or, (2x – 3)(2x + 1) = 0
Either, x = $\frac{3}{2}$, or x = $ - \frac{1}{2}$.
When x = $\frac{3}{2}$, f’’(x) = 24*$\frac{3}{2}$ – 12=
24> 0.(case of minima)
So, given function has minimafor x = $\frac{3}{2}$ and its
local minimum value is f$\left( {\frac{3}{2}} \right)$ = $4.{\left(
{\frac{3}{2}} \right)^2} - 6.{\left( {\frac{3}{2}} \right)^2} - 9.\left(
{\frac{3}{2}} \right) + 1$.
= 4 * $\frac{{27}}{8}$ – 6 * $\frac{9}{4}$ –
$\frac{{27}}{2}$ + 1 = $ - \frac{{25}}{2}$.
when x = $ - \frac{1}{2}$, f’’(x) = 24 * $\left( { -
\frac{1}{2}} \right)$– 12 = –24< 0.(case of maxima)
So, given function has maxima for x = $ - \frac{1}{2}$ and
its local maximum value is f$\left( { - \frac{1}{2}} \right)$ = $4.{\left( { -
\frac{1}{2}} \right)^3} - 6.{\left( { - \frac{1}{2}} \right)^2} - 9.\left( { -
\frac{1}{2}} \right) + 1$.
= $ - \frac{1}{2} - \frac{3}{2} + \frac{9}{2}$ + 1 =
$\frac{7}{2}$
For point of inflection, f’’(x) = 0.
So, 24x – 12 = 0 ⇒ x = $\frac{1}{2}$.
(viii) f(x) = x +
$\frac{{100}}{{\rm{x}}}$ – 5
Solution:
f(x) = x + $\frac{{100}}{{\rm{x}}}$ – 5
f’(x) = 1 – $\frac{{100}}{{{{\rm{x}}^2}}}$
f'’(x) = $\frac{{200}}{{{{\rm{x}}^3}}}$
For maxima and minima, f’(x) = 0.
Or, 1 – $\frac{{100}}{{{{\rm{x}}^2}}}$ = 0
Or, x2 = 100
Or, x = ± 10.
At x = 10, f’’(x) = $\frac{{200}}{{{{10}^3}}}$=
$\frac{1}{5}$> 0.
So, f(x) has minimum value at x = 10.
Min.value = 10 + $\frac{{100}}{{10}}$ – 5 = 15
At x = – 10, f’’(x) = $\frac{{200}}{{{{\left( { - 10}
\right)}^3}}}$= $ - \frac{1}{5}$< 0
So, f(x) has maximum value at x = –10.
Or, Max. value = – 10 + $\frac{{100}}{{ - 10}}$ – 5 = –25.
No. finite value of x makes f’’(x) = 0,so there is no point
of inflection.
6. Show that the
following function have neither maximum nor minimum values.
(i) f(x) = x3 –
6x2 + 24x + 4
Solution:
f(x) = x3 – 6x2 + 24x + 4
f’(x) = 3x2 – 12x + 24
= 3{x2 – 4x + 8} = 3{x2 – 4x
+ 4 + 4}
= 3{(x – 2)2 + (2)2} ≠ 0 for all
real values of x.
So, f(x) has neither maximum nor minimum value.
(ii) f(x) = x3 –
6x2 + 12x – 3
Solution:
f(x) = x3 – 6x2 + 12x – 3
f’(x) = 3x2 – 12x + 12.
f’’(x) = 6x – 12.
For maxima or minima, f’(x) = 0.
Or, 3x2 – 12x + 12 = 0
Or, x2 – 4x + 4 = 0
Or, (x – 2)2 = 0
Or, (x – 2) = 0
So, x = 2.
At, x = 2, f’(x) = 6 * 2 – 12 = 0
At x = 2, f’’(x) = 6 ≠ 0.
So, f(x) has neither maximum nor minimum value.
7. Determine where
the graph is concave upward and where it is concave downwards of the following
function:
(i) f(x) = x4 –
2x3 + 5
f(x) = x4 – 2x3 + 5
f’(x) = 4x3 – 6x2
f’’(x) = 12x2 – 12x = 12x(x – 1)
For, x > 1, f’’(x) > 0, so the graph is
concave upwards.
For, x < 0. f'’(x) > 0, so the graph is concave
upwards.
For 0 < x < 1, f’’(x) < 0, so the graph is
concave downwards.
(ii) f(x) = x4 –
8x3 + 18x2 – 24
Solution:
f(x) = x4 – 8x3 + 18x2 –
24
f’(x) = 4x3 – 24x2 + 36x
f’’(x) = 12x2 – 48x + 36. = 12(x2 –
4x + 3) = 12(x – 3)(x – 1).
For, x > 3, f’’(x) > 0, so the graph is
concave upwards.
For, x < 1. f'’(x) > 0, so the graph is concave
upwards.
For 1 < x < 3, f’’(x) < 0, so the graph is
concave downwards.
(iii) y = 3x5 +
10x3 + 15x
Solution:
y = 3x5 + 10x3 + 15x
or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 15x4 +
30x3 + 15.
Or, $\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}}$
= 60x3 + 60x = 60x(x2 + 1).
For, x > 0, f’’(x) < 0, so the graph is
concave upwards.
For, x < 0. f'’(x) > 0, so the graph is concave
downwards.
(iv) f(x) = x3 –
9x2 defined on [-2,5]
Solution:
f(x) = x3 – 9x2
f’(x) = 3x2 – 18x
f’’(x) = 6x – 18.
Let f’’(x) = 6x – 18 = 0 ⇒ x = 3.
When –2 ≤ x < 3, f’’(x) < 0.
When 3 < x ≤ 5, f’’(x) > 0
So, given function is concave upward fir 3 < x ≤ 5 and
downward for –2 ≤ x < 3.
8. A man who has 144
meters of fencing materials wishes to enclose a rectangular garden. Find the
maximum area he can encloses.
Solution:
Let x = length, y = breadth and A = area of the rectangular garden.
Perimeter = 144
Or, 2x + 2y = 144
Or, x + y = 72.
So, y = 7x – x …(i)
A = x.y = x(72 – x) = 72x – x2.
Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 72 – 2x,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2.
For maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0
Or, 72 – 2x = 0
Or, 2x = 72
So, x = 36
When x = 36,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2 < 0, so A has
maximum value,
When x = 36, y = 72 – x = 72 – 36 = 36.
Max.area = x.y = 36 * 36 = 1296m2.
9. Show that the
rectangle of largest possible are, for a given perimeter is square.
Solution:
Let x = length, y = breadth and A = area of the rectangular
garden.
Perimeter = 2a(suppose)
Or, 2x + 2y = 2a
Or, x + y = a.
So, y = a – x….(i)
A = x.y = x(a – x) = ax – x2.
Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = a – 2x,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2.
For maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0
Or, a – 2x = 0
So, x =$\frac{{\rm{a}}}{2}$.
When x = $\frac{{\rm{a}}}{2}$,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2 < 0, A has
max.value.
When x = a/2, y = a – x = a – a/2 = a/2.
So, x = y i.e. length = breadth, hence the rectangle is a
square for max. area.
10. A window is in
the form of rectangle surmounted by a semi-circle. If the total perimeter is 9
meters, find the radius of semi-circle for the greatest window area.
Solution:
Let 2x = length, y = breadth of the window in the form a
rectangle.
Then the radius of the semi – circle on the rectangle = x.
Perimeter = 2x + 2y + $\frac{1}{2}$2πx
Or, 9 = 2x + 2y
So, y = $\frac{1}{2}\left( {9 - 2{\rm{x}} - {\rm{\pi x}}}
\right)$.
A = area of the window = 2x.y + $\frac{1}{2}$π.x2.
= 2x.$\frac{1}{2}$(9 – 2x – πx) + $\frac{1}{2}$πx2.
= 9x – 2x2 – πx2 +
$\frac{1}{2}$πx2.
= 9x – 2x2 – $\frac{1}{2}$πx2
Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 9 – 4x – πx,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = – 4 – π
For, maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ =
0.
Or, 9 – 4x – πx = 0
Or, (4 + π)x = 9
So, x = $\frac{9}{{4 + {\rm{\pi }}}}$.
When x = $\frac{9}{{4 + {\rm{\pi }}}}$,
$\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = – 4 – π < 0 so A
has maximum value.
So, x = radius of the semi – circle = $\frac{9}{{4 + {\rm{\pi }}}}$ meter.
11. A closed cylinder
can is to be made so that its volume is 52cm3. Find its dimension if
the surface is to be minimum.
Solution:
Let r = Radius, h = Height and V = volume of the cylindrical
can.
V = πr2h.
Or, 52 = πr2h
So, h = $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}}$ ….(i)
Again, S = 2πrh + 2πr2, where S = surface area.
= 2πr. $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}}$ + 2πr2 =
$\frac{{104}}{{\rm{r}}}$ + 2πr2
Or, $\frac{{{\rm{dS}}}}{{{\rm{dr}}}}$ = $ - \frac{{104}}{{{4^2}}}
+ 4{\rm{\pi r}}$
Or, $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{r}}^2}}}$
= $\frac{{208}}{{{{\rm{r}}^3}}}$ + 4π.
For maxima or minima, $\frac{{{\rm{dS}}}}{{{\rm{dr}}}}$ = 0.
Or, $ - \frac{{104}}{{{{\rm{r}}^2}}}$ + 4πr = 0
Or, 4πr3 = 104
Or, r3 = $\frac{{104}}{{4{\rm{\pi }}}}$ =
$\frac{{26}}{{\rm{\pi }}}$.
So, r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$
When r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$,
$\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{r}}^2}}}$ =
$\frac{{208}}{{{{\rm{r}}^3}}}$ + 4π = $\frac{{208}}{{\frac{{26}}{{\rm{\pi
}}}}}$ + 4π = 12π.
So, S has minimum value when r =
$\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$
From(i), h = $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}} =
\frac{{52{\rm{r}}}}{{{\rm{\pi }}{{\rm{r}}^3}}} = \frac{{52{\rm{r}}}}{{26}}$ =
2r.
i.e. h : r = 2 : 1, where r =
$\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$.
12. A gardener having
120m of fencing wishes to enclose a rectangular plot of the land and also to
erect a fence across the land parallel to two of the sides. Find the maximum
area he can enclose.
Solution:
Let length = x, breadth = y and A = Area of the rectangle
plot of land.
2x + 2y + x = 120
3x + 2y = 120
Y = $\frac{1}{2}$(120 – 3x)…..(i)
A = x.y = x. $\frac{1}{2}$ (120 – 3x)
= $\frac{1}{2}$(120x – 3x2)
Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = $\frac{1}{2}$(120 –
6x) = 60 – 3x
Or, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$
= –3
For maximum or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0
Or, 60 – 3x = 0
So, x = 20.
When x = 20, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$
= – 3 < 0, so A has maximum value.
From(i), y = $\frac{1}{2}$.(120 – 3*20) = 30.
Max.area = x.y = 20.30 = 600m2.
13. Find two number
whose sum is 10 and the sum of whose square is mimimum.
Solution:
Let x and y be two numbers. Then,
X + y = 10
Y = 10 – x ….(i)
Let S = x2 + y2 = x2 +
(10 – x)2
S = x2 + 100 – 20x + x2 = 2x2 –
20x + 100
Or, $\frac{{{\rm{dS}}}}{{{\rm{dx}}}}$ = 4x – 20,
$\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = 4.
For maxima or minima, $\frac{{{\rm{dS}}}}{{{\rm{dx}}}}$ = 0
Or, 4x – 20 = 0
So, x = 5,
When x = 5,
$\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = 4 > 0, so S has
maximum value.
When x = 5, y = 10 – x = 10 – 5 = 5.
So, the two numbers are 5 and 5.