Application of Derivative Exercise: 18.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 18.1

1. (i) Examine whether the function f(x) = 15x2 – 14x + 1 is increasing or decreasing at x=$\frac{2}{5}$ and x=$\frac{5}{2}$.
Solution:

Given f(x) = 15x2 – 14x + 1

f'(x) = 30x – 14

At x = $\frac{2}{5}$, f’(x) = 30.$\frac{2}{5}$ – 14 = 12 – 14 = – 2 < 0

At x = $\frac{5}{2}$, f’(x) = 30.$\frac{5}{2}$ – 14 = 75 – 14 = 61 > 0

So, given function is increasing at x = $\frac{5}{2}$ and decreasing at x = $\frac{2}{5}$

(ii) Show that the function f(x) = 2x3 – 24x + 15 is increasing at x=2 and decreasing at x==$\frac{3}{2}$.

Solution:

Given f(x) = 2x3 – 24x + 15

f'(x) = 6x2 – 24.

At x = 3, f’(x) = 6.32 – 24 = 12 – 14 = 54 – 24 = 30 > 0.

At x = $\frac{3}{2}$, f’(x) = 6.${\left( {\frac{3}{2}} \right)^2}$ – 24 = $\frac{{27 - 48}}{2}$ = $ - \frac{{21}}{2}$< 0

So, given function is increasing at x = 3 and decreasing at x = $\frac{3}{2}$

 

2. (i) Test whether the function f(x) =2x2 – 4x + 3 is increasing or decreasing on both interval (1,4].

Solution:

Given f(x) = 2x2 – 4x + 3

f’(x) = 4x – 4

For every value in between,

(1,4], f’(x) > 0.

So, Given function is increasing on the interval (1,4].

(ii) Examine whether the function f(x) = 16x – $\frac{{4{{\rm{x}}^3}}}{3}$ is increasing or decreasing on the interval (–∞,–2).

Solution:

Given f(x) = 16x – $\frac{{4{{\rm{x}}^3}}}{3}$

f’(x) = 16 – 4x2.

For every value (–∞,–2), the function f’(x) < 0.

So, Given function is decreasing on the interval (–∞,–2).

(iii) Show that the function f(x) = –x3 + 6x2 – 13x + 20 is decreasing for all x ϵ R.

Solution:

Given f(x) = –x3 + 6x2 – 13x + 20

f’(x) = – 3x2 + 12x – 13

= – 3x2 + 12x – 12 – 1 = –3(x2 – 4x + 4) – 1

= –3(x – 2)2 – 1 is always negative for every values of x ϵ R.

So, Given function is decreasing for all x ϵ R. 

(iv) Show that the function 4x – $\frac{9}{{\rm{x}}}$ + 6 is increasing for all x ϵ R except x = 0.

Solution:

Given f(x) = 4x – $\frac{9}{{\rm{x}}}$ + 6.

f’(x) = 4 + $\frac{9}{{{{\rm{x}}^2}}}$

f’(x) = 4 + $\frac{9}{{{{\rm{x}}^2}}}$  is always positive except x = 0.

So, therefore function is increasing for all x ϵ R except x = 0.

 

3. Find the interval in which the following function are increasing or decreasing.

(i) f(x) = 3x2 – 6x + 5

Solution:

Given f(x) = 3x2 – 6x + 5

f’(x) = 6x – 6

Let 6x – 6 = 0 x = 1

When x > 1,   f’(x) > 0

When x < 1, f’(x) < 0

So, given function is increasing for (1,∞) and decreasing for (–∞.1).

(ii) f(x) = x4 – $\frac{1}{3}$x3

Solution:

Given f(x) = x4 – $\frac{1}{3}$x3

f’(x) = 4x3 – x2.

Let 4x3 – x2 = 0 x2(4x – 1) = 0

When x  = 0, or x = $\frac{1}{4}$.

When x < 0, f’(x) < 0.

When 0 < x <$\frac{1}{4}$,   f’(x) < 0

When x >$\frac{1}{4}$, f’(x) > 0

So, given function is decreasing for $\left( { - {\rm{\infty }},\frac{1}{4}} \right)$ and increasing for $\left( {\frac{1}{4},{\rm{\infty }}} \right)$.

(iii) f(x) = 5x3-135x+22

Solution:

f(x) = 5x3-135x+22

f’(x )=15x2 – 135

Let 15x2 – 135 = 0 x2 = 9 x = ±3

When x <–3, f’(x) > 0

When –3 < x < 3,   f’(x) < 0

When x > 3, f’(x) > 0

So, given function is increasing for $\left( { - {\rm{\infty }},3} \right){\rm{U}}\left( {3,{\rm{\infty }}} \right)$ and decreasing for $\left( { - 3,3} \right)$ 

(iv) f(x) = 6 + 12x + 3x2 – 2x2

Solution:

f(x) = 6 + 12x + 3x2 – 2x2

f'(x) = 12 + 6x – 6x2

Let  12 + 6x – 6x2 = 0

Or, x2 – x – 2 = 0

Or, x2 – 2x + x – 2 = 0

Or, x(x – 2) + 1 (x – 2) = 0

Or, (x – 2)(x + 1) = 0

Either, x = 2 or , x = –1

When x <–1, f’(x) < 0

When –1 < x < 2,   f’(x) > 0

When x > 2, f’(x) < 0

So, given function is decreasing for $\left( { - {\rm{\infty }}, - 1} \right){\rm{U}}\left( {2,{\rm{\infty }}} \right)$ and increasing for $\left( { - 1,2} \right)$.

(v) f(x) = x3 – 12x

Solution:

f(x) = x3 – 12x

f'(x) = 3x2 – 12

Let  3x2 – 12 = 0 x2 = 4 x= ± 2.

When x <–2, f’(x) > 0.

When –2 < x < 2,   f’(x) < 0

When x > 2, f’(x) > 0.

So, given function is increasing for $\left[ { - 3, - 2} \right){\rm{U}}\left( {2,5} \right]$ and decreasing for $\left( { - 2,2} \right)$.

 

4. Find the absolute maximum and the absolute minimum values of the following function on the given intervals:

(i) f(x) = 3x2 – 6x + 4 on [-1,2]

Solution:

Given f(x) = 3x2 – 6x + 4

f'(x) = 6x – 6

For, maximum or minimum f’(x) = 0

i.e. 6x – 6 = 0 x = 1

When x = –1, f(x) = 3(–1)2– 6(–1) + 4 = 13

When, x = 2, f(x) = 3.22 – 6.2 + 4 = 4

When x = 1, f(x) = 3.12 – 6.1 + 4 = 1.

So, absolute maximum = 13, Absolute minimum = 1. 

(ii) f(x) = 2x3 – 9x2 on [-2,4]

Solution:

Given f(x) = 2x3 – 9x2

f'(x) = 6x2 – 18x

For, maximum or minimum f’(x) = 0

i.e. 6x – 18x = 0

or, 6x(x – 3) = 0

When x = 0, or, x = 3.

When, x = –2, f(x) = 2.(–2)– 9*(–2)2 = – 52

When x = 4, f(x) = 2.43 – 9.42 = – 16.

When x = 0, f(x) = 0

When x = 3, f(x) = 2.33 – 9.32 = – 27.

So, absolute maximum = 0, Absolute minimum = –52. 

(iii) f(x) = x3-6x2+9x on [0,5]

Solution:

Given: f(x) = x3-6x2+9x

f’(x) = 3x2 – 12x + 9

For, maximum or minimum f’(x) = 0

3x2 – 12x + 9 = 0

or, x2 – 4x + 3 = 0.

Either, x = 1 or x = 3,

When x = 0, f(x) = 03 – 6.02 + 9.0 = 0

When, x = 3, f(x) = 33 – 6.32 + 9.3 = 0

When x = 1, f(x) = 13 – 6.12 + 9.1 = 4.

When x = 5, f(x) = 53 – 6.52 + 9.5 = 20

When x = 3, f(x) = 2.33 – 9.32 = – 27.

So, absolute maximum = 20, Absolute minimum = 0. 

(iv) f(x)=2x3-15x2+36x+10 on [1,4]

Solution:

Given: f(x)=2x3-15x2+36x+10

f’(x) = 6x2 – 30x + 36

For, maximum or minimum f’(x) = 0

6x2 – 30x + 36 = 0

or, x2 – 5x + 6 = 0

or, (x – 1)(x – 5) = 0.

Either, x = 1 or x = 5,

When x = 1, f(x) = 2.13 – 15.13 + 36.1 + 10 = 33.

When, x = 4, f(x) = 2.43 – 15.42 + 36.4 + 10 = 42.

Since, 5 $\left[ {1,4} \right]$.

So, absolute maximum = 42, Absolute minimum = 33.

 

5. Find the local maxima and local minima and the point of inflection

(i) f(x) = 3x2 – 6x + 3

Solution:

f(x) = 3x2 – 6x + 3

f’(x) = 6x – 6.

f'’(x) = 6.

For maxima and minima, f’(x) = 0.

6x – 6 = 0

Or, 6x = 6 x = 1.

At x = 1, f’’(x) = 6 > 0.

So, f(x) has minimum value at x =1.

Min. value = f(1) = 3 * (1)2 – 6 * 1 + 3 = 0

For all x, f’’(x) = 6 ≠ 0, so there is no point of inflection. 

(ii) f(x) = x3 – 12x + 8

Solution:

f(x) = x3 – 12x + 8

f’(x) = 3x2 – 12.

f'’(x) = 6x.

For maxima and minima, f’(x) = 0.

3x2 – 12 = 0.

3x2 = 12

Or, x2 = 3 –> x = ± 2.

At x = 2, f’’(x) = 6 * 2 = 12 > 0.

So, f(x) has minimum value at x = 2.

Min. value of f(2) = f(2) = (2)3 – 12*2 + 8 = –8.

Again, x = –2, f’’(x) = 6 * (–2) = –12 < 0.

So, f(x) has maximum value at x = –2.

Max. value of f(x) = f(–2) = (–2)3 – 12 * (–2) + 8 = 24.

f'(x) = 0 if 6x = 0 x = 0

So, x = 0 is the point of inflection.

(iii) f(x) = x3 – 6x2 + 3

Solution:

f(x) = x3 – 6x2 + 3

f’(x) = 3x2 – 12x.

f'’(x) = 6x – 12.

For maxima and minima, f’(x) = 0.

3x2 – 12x = 0.

3x(x – 4) = 0.

Either, 3x = 0 – x = 0

Or, x – 4  x = 4.

At x = 4, f’’(x) = 6 * 4 – 12 = 12 > 0.

So, f(x) has minimum value at x = 4.

Min. value = (4)3 – 6(4)2 + 3 = –29.

f'’(x) = 0 if 6x – 12 = 0

6x = 12  x = 2

So, x = 2 is the point of inflection. 

(iv) f(x) = 2x3 – 15x2 + 36x + 5

Solution:

f(x) = 2x3 – 15x2 + 36x + 5

f’(x) = 6x2 – 30x + 36

f'’(x) = 12x – 30.

For maxima and minima, f’(x) = 0.

Or, 6x2 – 30x + 36 = 0

Or, x2 – 5x + 6 = 0

Or, (x – 2)(x – 3) = 0

Either, x – 2 = 0, x 2

Or, x – 3 = 0, x 3.

At x = 2, f’’(x) = 12*2 – 30 = –6 > 0.

So, f(x) has maximum value at x = 2.

Max. value = 2.(3)3 – 15(2)2 + 36 * 2 + 5 = 33

At x = 3, f’’(x) = 12 * 3 – 30 = 6 > 0.

So, f(x) has minimum value at x = 3.

Min. value = 2(3)2 – 15(3)2 + 36 * 3 + 5 = 32

f’’(x) = 0  if 12x – 30 = 0

12x = 30  x = $\frac{{30}}{{12}}$ = $\frac{5}{2}$.

So, x = $\frac{5}{2}$ is the point of inflection.

(v) f(x) = 2x3 – 9x2 – 24x + 3

Solution:

f(x) = 2x3 – 9x2 – 24x + 3

f’(x) = 6x2 – 18x – 24.

f'’(x) = 12x – 18.

For maxima and minima, f’(x) = 0.

Or, 6x2 – 18x – 24. = 0

Or, x2 – 3x + 4 = 0

Or, (x – 4)(x + 1) = 0

Either, x – 4 = 0, x 4

Or, x – 1 = 0, x 1.

At x = 4, f’’(x) = 12*4 – 18 = 30 > 0.

So, f(x) has minimum value at x = 4.

Min. value = 2.(4)3 – 9(4)2 – 24(4)+ 3 = –109

At x = –1, f’’(x) = 12 * (–1) – 18 = –30 < 0.

So, f(x) has maximum value at x = –1.

Max. value = 2(–1)3 – 9(–1)2 – 24(–1) + 3 = 16.

f’’(x) = 0  if 12x – 18 = 0

12x = 18  x = $\frac{{18}}{{12}}$ = $\frac{3}{2}$.

So, x = $\frac{3}{2}$ is the point of inflection

(vi) f(x) = 4x3 – 15x2 + 12x + 7

Solution:

f(x) = 4x3 – 15x2 + 12x + 7

f’(x) = 12x2 – 30x + 12.

f'’(x) = 24x – 30.

For maxima and minima, f’(x) = 0.

Or, 12x2 – 30x + 12 = 0

Or, 2x2 – 5x + 2 = 0

Or, 2x2 – 4x – x + 2 = 0

Or, (x – 2)(2x – 1) = 0

Either, x – 2 = 0, x 2

Or, 2x – 1 = 0, x $\frac{1}{2}$.

At x = 2, f’’(x) = 24*2 – 30 = 18 > 0.

So, f(x) has minimum value at x = 2.

Min. value = 4.(2)3 – 15(2)2 + 12(2)+ 7 = 3

At x = $\frac{1}{2}$, f’’(x) = 24 * $\frac{1}{2}$– 30 = –18 < 0.

So, f(x) has maximum value at x = $\frac{1}{2}$.

Max. value = 4.${\left( {\frac{1}{2}} \right)^3} - 15.{\left( {\frac{1}{2}} \right)^2} + 12.\left( {\frac{1}{2}} \right) + 7$ = $\frac{{39}}{4}$.

f’’(x) = 0  if 24x – 30 = 0

24x = 30  x = $\frac{5}{4}$.

So, x = $\frac{5}{4}$ is the point of inflection. 

(vii) f(x) = 4x3 – 6x2 – 9x + 1 on the interval (-1,2)

Solution:

f(x) = 4x3 – 6x2 – 9x + 1

f’(x) = 12x2 – 12x – 9,

f'’(x) = 24x – 12.

For maxima and minima, f’(x) = 0.

Or, 12x2 – 12x – 9 = 0

Or, 4x2 – 4x – 3 = 0

Or, 4x2 – 6x + 2x – 3 = 0

Or, 2x(2x – 3) + 1(2x – 3) = 0

Or, (2x – 3)(2x + 1) = 0

Either, x = $\frac{3}{2}$, or x = $ - \frac{1}{2}$.

When x = $\frac{3}{2}$, f’’(x) = 24*$\frac{3}{2}$ – 12= 24> 0.(case of minima)

So, given function has minimafor x = $\frac{3}{2}$ and its local minimum value is f$\left( {\frac{3}{2}} \right)$ = $4.{\left( {\frac{3}{2}} \right)^2} - 6.{\left( {\frac{3}{2}} \right)^2} - 9.\left( {\frac{3}{2}} \right) + 1$.

= 4 * $\frac{{27}}{8}$ – 6 * $\frac{9}{4}$ – $\frac{{27}}{2}$ + 1 = $ - \frac{{25}}{2}$.

when x = $ - \frac{1}{2}$, f’’(x) = 24 * $\left( { - \frac{1}{2}} \right)$– 12 = –24< 0.(case of maxima)

So, given function has maxima for x = $ - \frac{1}{2}$ and its local maximum value is f$\left( { - \frac{1}{2}} \right)$ = $4.{\left( { - \frac{1}{2}} \right)^3} - 6.{\left( { - \frac{1}{2}} \right)^2} - 9.\left( { - \frac{1}{2}} \right) + 1$.

= $ - \frac{1}{2} - \frac{3}{2} + \frac{9}{2}$ + 1 = $\frac{7}{2}$

For point of inflection, f’’(x) = 0.

So, 24x – 12 = 0 x = $\frac{1}{2}$. 

(viii) f(x) = x + $\frac{{100}}{{\rm{x}}}$ – 5

Solution:

f(x) = x + $\frac{{100}}{{\rm{x}}}$ – 5

f’(x) = 1 – $\frac{{100}}{{{{\rm{x}}^2}}}$

f'’(x) = $\frac{{200}}{{{{\rm{x}}^3}}}$

For maxima and minima, f’(x) = 0.

Or, 1 – $\frac{{100}}{{{{\rm{x}}^2}}}$ = 0

Or, x2 = 100

Or, x = ± 10.

At x = 10, f’’(x) = $\frac{{200}}{{{{10}^3}}}$= $\frac{1}{5}$> 0.

So, f(x) has minimum value at x = 10.

Min.value = 10 + $\frac{{100}}{{10}}$ – 5 = 15

At x = – 10, f’’(x) = $\frac{{200}}{{{{\left( { - 10} \right)}^3}}}$= $ - \frac{1}{5}$< 0

So, f(x) has maximum value at x = –10.

Or, Max. value = – 10 + $\frac{{100}}{{ - 10}}$ – 5 = –25.

No. finite value of x makes f’’(x) = 0,so there is no point of inflection.

 

6. Show that the following function have neither maximum nor minimum values.

(i) f(x) = x3 – 6x2 + 24x + 4

Solution:

f(x) = x3 – 6x2 + 24x + 4

f’(x) = 3x2 – 12x + 24

= 3{x2 – 4x + 8} = 3{x2 – 4x + 4 + 4}

= 3{(x – 2)2 + (2)2} ≠ 0 for all real values of x.

So, f(x) has neither maximum nor minimum value. 

(ii) f(x) = x3 – 6x2 + 12x – 3
Solution:

f(x) = x3 – 6x2 + 12x – 3

f’(x) = 3x2 – 12x + 12.

f’’(x) = 6x – 12.

For maxima or minima, f’(x) = 0.

Or, 3x2 – 12x + 12 = 0

Or, x2 – 4x + 4 = 0

Or, (x – 2)2 = 0

Or, (x – 2) = 0

So, x = 2.

At, x = 2,  f’(x) =  6 * 2 – 12 = 0

At x = 2, f’’(x) = 6 ≠ 0.

So, f(x) has neither maximum nor minimum value.

 

7. Determine where the graph is concave upward and where it is concave downwards of the following function:

(i) f(x) = x4 – 2x3 + 5

f(x) = x4 – 2x3 + 5

f’(x) = 4x3 – 6x2

f’’(x) = 12x2 – 12x = 12x(x – 1)

For, x > 1,   f’’(x) > 0, so the graph is concave upwards.

For, x < 0. f'’(x) > 0, so the graph is concave upwards.

For  0 < x < 1, f’’(x) < 0, so the graph is concave downwards. 

(ii) f(x) = x4 – 8x3 + 18x2 – 24

Solution:

f(x) = x4 – 8x3 + 18x2 – 24

f’(x) = 4x3 – 24x2 + 36x

f’’(x) = 12x2 – 48x + 36. = 12(x2 – 4x + 3) = 12(x – 3)(x – 1).

For, x > 3,   f’’(x) > 0, so the graph is concave upwards.

For, x < 1. f'’(x) > 0, so the graph is concave upwards.

For  1 < x < 3, f’’(x) < 0, so the graph is concave downwards. 

(iii) y = 3x5 + 10x3 + 15x

Solution:

y = 3x5 + 10x3 + 15x

or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = 15x4 + 30x3 + 15.

Or, $\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = 60x3 + 60x = 60x(x2 + 1).

For, x > 0,   f’’(x) < 0, so the graph is concave upwards.

For, x < 0. f'’(x) > 0, so the graph is concave downwards.

(iv) f(x) = x3 – 9x2 defined on [-2,5]

Solution:

f(x) = x3 – 9x2

f’(x) = 3x2 – 18x

f’’(x) = 6x – 18.

Let f’’(x) = 6x – 18 = 0 x = 3.

When –2 ≤ x < 3,  f’’(x) < 0.

When 3 < x ≤ 5,  f’’(x) > 0

So, given function is concave upward fir 3 < x ≤ 5 and downward for –2 ≤ x < 3.

 

8. A man who has 144 meters of fencing materials wishes to enclose a rectangular garden. Find the maximum area he can encloses.

Solution:
Let x = length, y = breadth and A = area of the rectangular garden.
Perimeter = 144

Or, 2x + 2y = 144

Or, x + y = 72.

So, y = 7x – x …(i)

A = x.y = x(72 – x) = 72x – x2.

Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 72 – 2x, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2.

For maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0

Or, 72 – 2x = 0

Or, 2x = 72

So, x = 36

When x = 36, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2 < 0, so A has maximum value,

When x = 36, y = 72 – x = 72 – 36 = 36.

Max.area = x.y = 36 * 36 = 1296m2.

 

9. Show that the rectangle of largest possible are, for a given perimeter is square.

Solution:

Let x = length, y = breadth and A = area of the rectangular garden.
Perimeter = 2a(suppose)

Or, 2x + 2y = 2a

Or, x + y = a.

So, y = a – x….(i)

A = x.y = x(a – x) = ax – x2.

Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = a – 2x, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2.

For maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0

Or, a – 2x = 0

So, x =$\frac{{\rm{a}}}{2}$.

When x = $\frac{{\rm{a}}}{2}$, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –2 < 0, A has max.value.

When x = a/2,  y = a – x = a – a/2 = a/2.

So, x = y i.e. length = breadth, hence the rectangle is a square for max. area.

 

10. A window is in the form of rectangle surmounted by a semi-circle. If the total perimeter is 9 meters, find the radius of semi-circle for the greatest window area.

Solution:

Let 2x = length, y = breadth of the window in the form a rectangle.

Then the radius of the semi – circle on the rectangle = x.

Perimeter = 2x + 2y + $\frac{1}{2}$2πx

Or, 9 = 2x + 2y

So, y = $\frac{1}{2}\left( {9 - 2{\rm{x}} - {\rm{\pi x}}} \right)$.

A = area of the window = 2x.y + $\frac{1}{2}$π.x2.

= 2x.$\frac{1}{2}$(9 – 2x – πx) + $\frac{1}{2}$πx2.

= 9x – 2x2 – πx2 + $\frac{1}{2}$πx2.

= 9x – 2x2 – $\frac{1}{2}$πx2

Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 9 – 4x – πx, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = – 4 – π

For, maxima or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0.

Or, 9 – 4x – πx = 0

Or, (4 + π)x = 9

So, x = $\frac{9}{{4 + {\rm{\pi }}}}$.

When x = $\frac{9}{{4 + {\rm{\pi }}}}$, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = – 4 – π < 0 so A has maximum value.
So, x = radius of the semi – circle = $\frac{9}{{4 + {\rm{\pi }}}}$ meter.

 

11. A closed cylinder can is to be made so that its volume is 52cm3. Find its dimension if the surface is to be minimum.

Solution:

Let r = Radius, h = Height and V = volume of the cylindrical can.

V = πr2h.

Or, 52 = πr2h

So, h = $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}}$ ….(i)

Again, S = 2πrh + 2πr2, where S = surface area.

= 2πr. $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}}$ + 2πr2 = $\frac{{104}}{{\rm{r}}}$ + 2πr2

Or, $\frac{{{\rm{dS}}}}{{{\rm{dr}}}}$ = $ - \frac{{104}}{{{4^2}}} + 4{\rm{\pi r}}$

Or, $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{r}}^2}}}$ = $\frac{{208}}{{{{\rm{r}}^3}}}$ + 4π.

For maxima or minima, $\frac{{{\rm{dS}}}}{{{\rm{dr}}}}$ = 0.

Or, $ - \frac{{104}}{{{{\rm{r}}^2}}}$ + 4πr = 0

Or, 4πr3 = 104

Or, r3 = $\frac{{104}}{{4{\rm{\pi }}}}$ = $\frac{{26}}{{\rm{\pi }}}$.

So, r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$

When r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$, $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{r}}^2}}}$ = $\frac{{208}}{{{{\rm{r}}^3}}}$ + 4π = $\frac{{208}}{{\frac{{26}}{{\rm{\pi }}}}}$ + 4π = 12π.

So, S has minimum value when r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$

From(i), h = $\frac{{52}}{{{\rm{\pi }}{{\rm{r}}^2}}} = \frac{{52{\rm{r}}}}{{{\rm{\pi }}{{\rm{r}}^3}}} = \frac{{52{\rm{r}}}}{{26}}$ = 2r.

i.e. h : r = 2 : 1, where r = $\sqrt[3]{{\frac{{26}}{{\rm{\pi }}}}}$.

 

12. A gardener having 120m of fencing wishes to enclose a rectangular plot of the land and also to erect a fence across the land parallel to two of the sides. Find the maximum area he can enclose.

Solution:

Let length = x, breadth = y and A = Area of the rectangle plot of land.

2x + 2y + x = 120

3x + 2y = 120

Y = $\frac{1}{2}$(120 – 3x)…..(i)

A = x.y = x. $\frac{1}{2}$ (120 – 3x)

= $\frac{1}{2}$(120x – 3x2)

Or, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = $\frac{1}{2}$(120 – 6x) = 60 – 3x

Or, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = –3

For maximum or minima, $\frac{{{\rm{dA}}}}{{{\rm{dx}}}}$ = 0

Or, 60 – 3x = 0

So, x = 20.

When x = 20, $\frac{{{{\rm{d}}^2}{\rm{A}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = – 3 < 0, so A has maximum value.

From(i), y = $\frac{1}{2}$.(120 – 3*20) = 30.

Max.area = x.y = 20.30 = 600m2.

 

13. Find two number whose sum is 10 and the sum of whose square is mimimum.

Solution:

Let x and y be two numbers. Then,

X + y = 10

Y = 10 – x ….(i)

Let S = x2 + y2 = x2 + (10 – x)2

S = x2 + 100 – 20x + x2 = 2x2 – 20x + 100

Or, $\frac{{{\rm{dS}}}}{{{\rm{dx}}}}$ = 4x – 20, $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = 4.

For maxima or minima, $\frac{{{\rm{dS}}}}{{{\rm{dx}}}}$ = 0

Or, 4x – 20 = 0

So, x = 5,

When x = 5, $\frac{{{{\rm{d}}^2}{\rm{S}}}}{{{\rm{d}}{{\rm{x}}^2}}}$ = 4 > 0, so S has maximum value.

When x = 5, y = 10 – x = 10 – 5 = 5.

So, the two numbers are 5 and 5.

Getting Info...

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.