Syllabus: Content to study
Topic: Derivative of Hyperbolic Function
- Hyperbolic Function
- Derivative of Hyperbolic Function
Exercise 15.2
Derivative of Hyperbolic Function
1. log(tanh x)
Solution:
Let y = log(tanhx)
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{{\rm{d}}\left( {{\rm{logtanhx}}} \right)}}{{{\rm{dx}}}}$ =
$\frac{{{\rm{d}}\left( {{\rm{log}}.{\rm{tangx}}} \right)}}{{{\rm{d}}\left(
{{\rm{tanhx}}} \right)}}.\frac{{{\rm{d}}\left( {{\rm{tanhx}}} \right)}}{{{\rm{dx}}}}$.
= $\frac{1}{{{\rm{tanhx}}}}.{\sec ^2}{\rm{hx}}$ =
$\frac{{{\rm{coshx}}}}{{{\rm{sinhx}}}}.\frac{1}{{{{\cosh }^2}{\rm{x}}}}$
= $\frac{1}{{{\rm{sinhx}}.{\rm{coshx}}}}$ = $\frac{2}{{{\rm{sinh}}2{\rm{x}}}}$ = 2cosec2x.
2. log.sinh $\frac{{\rm{x}}}{{\rm{a}}}$
Solution:
Let y = log.sinh $\frac{{\rm{x}}}{{\rm{a}}}$
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{log}}.\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)$ = $\frac{{{\rm{d}}\left( {{\rm{log}}.\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left( {\sin
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$.
= $\frac{1}{{\sinh \frac{{\rm{x}}}{{\rm{a}}}}}$.$\cos \frac{{\rm{x}}}{{\rm{a}}}.\frac{1}{{\rm{a}}}$ = $\frac{1}{{\rm{a}}}.\coth \frac{{\rm{x}}}{{\rm{a}}}$.
3. esinhx
Solution:
Let y = esinhx.
Differentiating both sides w.r.t. ‘x’.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{\rm{d}}}{{{\rm{dx}}}}$(esinhx) = $\frac{{{\rm{d}}\left(
{{{\rm{e}}^{{\rm{sinhx}}}}} \right)}}{{{\rm{d}}\left( {{\rm{sinhx}}}
\right)}}.\frac{{{\rm{d}}\left( {{\rm{sinhx}}} \right)}}{{{\rm{dx}}}}$ = esinhx.coshx.
4. ${{\rm{e}}^{{{\cosh }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}}}$
Solution:
Let y = ${{\rm{e}}^{{{\cosh }^{ -
1}}\frac{{\rm{x}}}{{\rm{a}}}}}$
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{{\rm{d}}\left( {{{\rm{e}}^{{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}}}}
\right)}}{{{\rm{d}}\left( {{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$.
= ${{\rm{e}}^{{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}}}$.
$\frac{1}{{\sqrt {{{\left( {\frac{{\rm{x}}}{{\rm{a}}}} \right)}^2} - 1}
}}.\frac{1}{{\rm{a}}}$
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = $\frac{{{{\rm{e}}^{{{\cos }^{ - 1}}\frac{{\rm{x}}}{{\rm{a}}}}}}}{{\sqrt {{{\rm{x}}^2} - {{\rm{a}}^2}} }}$.
5. sech(tan-1x)
Solution:
Let y = sech(tan-1x)
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{{\rm{d}}\left( {{\rm{sech}}\left( {{{\tan }^{ - 1}}{\rm{x}}} \right)}
\right)}}{{{\rm{dx}}}}$ = $\frac{{{\rm{d}}\left( {{\rm{sech}}\left( {{{\tan }^{
- 1}}{\rm{x}}} \right)} \right)}}{{{\rm{d}}\left( {{{\tan }^{ - 1}}{\rm{x}}}
\right)}}.\frac{{{\rm{d}}\left( {{{\tan }^{ - 1}}{\rm{x}}}
\right)}}{{{\rm{dx}}}}$
= - sech(tan-1x).tanh(tan-1x).$\frac{1}{{1
+ {{\rm{x}}^2}}}$.
= $ - \frac{1}{{1 + {{\rm{x}}^2}}}$sech.(tan-1x)tanh(tan-1x).
6. sec-1x – cos-1x.
Solution:
Ley y = sec-1x – cos-1x
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{\rm{d}}}{{{\rm{dx}}}}$(sech-1x – cos-1x)
= $\frac{{\rm{d}}}{{{\rm{dx}}}}$ (sech-1x) –
$\frac{{\rm{d}}}{{{\rm{dx}}}}$(cosh-1x)
= $ - \frac{1}{{{\rm{x}}\sqrt {1 - {{\rm{x}}^2}} }} - \frac{1}{{\sqrt {{{\rm{x}}^2} - 1} }}$.
7. Arc.tan.sinhx
Solution:
Let y = Arc.tan.sinhx
Or, y = tan-1.sinhx
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
$\frac{{\rm{d}}}{{{\rm{dx}}}}$(tan-1.sinhx) = $\frac{{{\rm{d}}\left(
{{{\tan }^{ - 1}}{\rm{sinhx}}} \right)}}{{{\rm{d}}\left( {{\rm{sinhx}}} \right)}}.\frac{{{\rm{d}}\left(
{{\rm{sinhx}}} \right)}}{{{\rm{dx}}}}$
= $\frac{1}{{1 + {{\sinh }^2}{\rm{x}}}}.{\rm{coshx}}$ = $\frac{{{\rm{coshx}}}}{{{{\cosh }^2}{\rm{x}}}}$ = sec.hx.
8. 2tanh-1$\left(
{{\rm{tan}}\frac{1}{2}{\rm{x}}} \right)$
Solution:
Let y = 2tanh-1$\left(
{{\rm{tan}}\frac{1}{2}{\rm{x}}} \right)$
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
2.$\frac{{\rm{d}}}{{{\rm{dx}}}}$$\left( {{{\tan }^{ - 1}}(\tan
\frac{1}{2}{\rm{x}}){\rm{\: }}} \right)$
= $2\frac{{{\rm{d}}\left( {{{\tan }^{ - 1}}(\tan
\frac{1}{2}{\rm{x}}){\rm{\: }}} \right)}}{{{\rm{d}}\left( {\tan
\frac{1}{2}{\rm{x}}} \right)}}.\frac{{{\rm{d}}\left( {\tan \frac{1}{2}{\rm{x}}}
\right)}}{{{\rm{d}}\left( {\frac{1}{2}{\rm{x}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{1}{2}{\rm{x}}} \right)}}{{{\rm{dx}}}}$.
= $2.{\rm{\: }}\frac{1}{{1 - {{\tan
}^2}\frac{1}{2}{\rm{x}}}}$.sec2$\frac{1}{2}$.x.$\frac{1}{2}$ =
$\frac{{1 + {{\tan }^2}\frac{1}{2}{\rm{x}}}}{{1 - {{\tan
}^2}\frac{1}{2}{\rm{x}}}}$.
= $\frac{1}{{{\rm{cosx}}}}$ = secx.
9. xcosh x/a
Solution:
Let y = xcosh x/a
log y = cosh $\frac{{\rm{x}}}{{\rm{a}}}$.logx
or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(logy) =
$\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\cosh
\frac{{\rm{x}}}{{\rm{a}}}.{\rm{logx}}} \right)$.
or, $\frac{{{\rm{d}}\left( {{\rm{logy}}}
\right)}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = cosh
$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(logx) + logx
$\frac{{{\rm{d}}\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)}}{{{\rm{d}}\left( {\frac{{\rm{x}}}{{\rm{a}}}}
\right)}}.\frac{{{\rm{d}}\left( {\frac{{\rm{x}}}{{\rm{a}}}}
\right)}}{{{\rm{dx}}}}$.
or, $\frac{1}{{\rm{y}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
cosh${\rm{\: }}\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{x}}}$ + logx.sinh
$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{a}}}$.
or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y$\left(
{\frac{1}{{\rm{x}}}\cosh \frac{{\rm{x}}}{{\rm{a}}} +
\frac{1}{{\rm{a}}}{\rm{logxsinh}}\frac{{\rm{x}}}{{\rm{a}}}} \right)$.
= xcosh x/a.$\left( {\frac{1}{{\rm{x}}}\cosh \frac{{\rm{x}}}{{\rm{a}}} + \frac{1}{{\rm{a}}}{\rm{logx}}.\sinh \frac{{\rm{x}}}{{\rm{a}}}} \right)$.
10. ${{\rm{x}}^{\sinh \frac{{{{\rm{x}}^2}}}{{\rm{a}}}}}$
Solution:
Let y = ${{\rm{x}}^{\sinh \frac{{{{\rm{x}}^2}}}{{\rm{a}}}}}$
So, logy = sinh $\frac{{{{\rm{x}}^2}}}{{\rm{a}}}$.logx
Differentiating, we have,
$\frac{1}{{\rm{y}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = sinh${\rm{\: }}\frac{{{{\rm{x}}^2}}}{{\rm{a}}}.\frac{1}{{\rm{x}}}$
+ cosh $\frac{{{{\rm{x}}^2}}}{{\rm{a}}}.\frac{{2{\rm{a}}}}{{\rm{a}}}$.logx.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = ${{\rm{x}}^{\sinh
\frac{{{{\rm{x}}^2}}}{{\rm{a}}}}}$.${\rm{\: }}\left( {\frac{1}{{\rm{x}}}\sinh
\frac{{{{\rm{x}}^2}}}{{\rm{a}}} +
\frac{{2{\rm{x}}}}{{\rm{a}}}{\rm{logxcosh}}\frac{{{{\rm{x}}^2}}}{{\rm{a}}}}
\right)$.
11. ${{\rm{x}}^{{{\cosh }^2}\frac{{\rm{x}}}{{\rm{a}}}}}$
Solution:
Let y = ${{\rm{x}}^{{{\cosh }^2}\frac{{\rm{x}}}{{\rm{a}}}}}$
log y = ${{\rm{x}}^{{{\cosh
}^2}\frac{{\rm{x}}}{{\rm{a}}}}}$.logx
or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(logy) =
$\frac{{\rm{d}}}{{{\rm{dx}}}}$$\left( {{{\cosh
}^2}\frac{{\rm{x}}}{{\rm{a}}}.{\rm{logx}}} \right)$.
or, $\frac{{{\rm{d}}\left( {{\rm{logy}}}
\right)}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = cosh2$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(logx)
+ logx. $\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\cosh
}^2}\frac{{\rm{x}}}{{\rm{a}}}} \right)$.
Or, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
cosh2$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{x}}}$ + logx
$\frac{{{\rm{d}}\left( {{{\cosh }^2}\frac{{\rm{x}}}{{\rm{a}}}}
\right)}}{{{\rm{d}}\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)}}.\frac{{{\rm{d}}\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)}}{{{\rm{d}}\left( {\frac{{\rm{x}}}{{\rm{a}}}}
\right)}}.\frac{{{\rm{d}}\left( {\frac{{\rm{x}}}{{\rm{a}}}}
\right)}}{{{\rm{dx}}}}$.
= $\frac{1}{{\rm{x}}}$cosh2$\frac{{\rm{x}}}{{\rm{a}}}$
+ log.x.2cosh $\frac{{\rm{x}}}{{\rm{a}}}$.sinh.
$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{a}}}$.
So, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y$\left(
{\frac{1}{{\rm{x}}}\cos {{\rm{h}}^2}{\rm{\: }}\frac{{\rm{x}}}{{\rm{a}}} +
\frac{1}{{\rm{a}}}{\rm{logx}}.\sinh \frac{{2{\rm{x}}}}{{\rm{a}}}} \right)$
= ${{\rm{x}}^{{{\cosh }^2}\frac{{\rm{x}}}{{\rm{a}}}}}$. $\left( {\frac{1}{{\rm{x}}}{{\cosh }^2}\frac{{\rm{x}}}{{\rm{a}}} + \frac{1}{{\rm{a}}}{\rm{logxsinh}}\frac{{2{\rm{x}}}}{{\rm{a}}}} \right)$.
12. ${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}}}
\right)^{{{\rm{x}}^2}}}$
Solution:
Let y = ${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}}}
\right)^{{{\rm{x}}^2}}}$
Or, logy = x2log.sinh
$\frac{{\rm{x}}}{{\rm{a}}}$.
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log.y) =
$\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^2}{\rm{log}}.\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)$.
Or, $\frac{{{\rm{d}}\left( {{\rm{logy}}}
\right)}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = x2.$\frac{{\rm{d}}}{{{\rm{dx}}}}\left(
{{\rm{logsinh}}\frac{{\rm{x}}}{{\rm{a}}}} \right)$ + log.sinh $\frac{{\rm{x}}}{{\rm{a}}}$.
$\frac{{\rm{d}}}{{{\rm{dx}}}}$(x2).
Or, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
x2$\frac{{{\rm{d}}\left( {{\rm{log}}.\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$ + log.sinh
$\frac{{\rm{x}}}{{\rm{a}}}$.2x
Or, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
x2.$\frac{1}{{\sinh \frac{{\rm{x}}}{{\rm{a}}}}}$.cosh
$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{a}}}$ +
2x.log.sinh$\frac{{\rm{x}}}{{\rm{a}}}$.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y$.\left(
{\frac{{{{\rm{x}}^2}}}{{\rm{a}}}.\coth \frac{{\rm{x}}}{{\rm{a}}} +
2{\rm{xlog}}.{\rm{sinh}}\frac{{\rm{x}}}{{\rm{a}}}} \right)$.
= ${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}}} \right)^{{{\rm{x}}^2}}}\left( {\frac{{{{\rm{x}}^2}}}{{\rm{a}}}.\coth \frac{{\rm{x}}}{{\rm{a}}} + 2{\rm{x}}.{\rm{log}}.\sinh \frac{{\rm{x}}}{{\rm{a}}}} \right)$.
13. ${\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)^{{\rm{logx}}}}$
Solution:
Let y = ${\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)^{{\rm{logx}}}}$
Or, logy = logx.log.cosh$\frac{{\rm{x}}}{{\rm{a}}}$.
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(log y) =
$\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{logx}}.{\rm{log}}.\cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)$
Or, $\frac{{{\rm{d}}\left( {{\rm{logy}}}
\right)}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = logx.
$\frac{{{\rm{d}}\left( {{\rm{log}}.\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dcosh}}\frac{{\rm{x}}}{{\rm{a}}}}}.\frac{{{\rm{d}}\left(
{\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$ + log.cosh$.\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{{\rm{d}}}{{{\rm{dx}}}}$(logx).
Or, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
logx. $\frac{1}{{\cosh \frac{{\rm{x}}}{{\rm{a}}}}}$.sinh
$\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{a}}}$ + log.cosh $\frac{{\rm{x}}}{{\rm{a}}}$.$\frac{1}{{\rm{x}}}$.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y.$\left(
{\frac{1}{{\rm{a}}}{\rm{logx}}.\tanh \frac{{\rm{x}}}{{\rm{a}}} +
\frac{1}{{\rm{x}}}{\rm{log}}.\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)$.
= ${\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)^{{\rm{logx}}}}\left( {\frac{1}{{\rm{a}}}{\rm{logx}}.\tanh \frac{{\rm{x}}}{{\rm{a}}} + \frac{1}{{\rm{x}}}.{\rm{log}}.\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)$.
14. ${\left( {{\rm{coshx}}} \right)^{{{\sinh }^{ -
1}}{\rm{x}}}}$.
Solution:
Let t = ${\left( {{\rm{coshx}}} \right)^{{{\sinh }^{ -
1}}{\rm{x}}}}$.
So, logy = sinh-1x.log(coshx)
So, $\frac{1}{{\rm{y}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = sinh-1x.$\frac{1}{{{\rm{coshx}}}}$.sinhx + $\frac{1}{{\sqrt {1 + {{\rm{x}}^2}} }}$.log(coshx).
15. ${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)^{{\rm{nx}}}}$
Solution:
Let y = ${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)^{{\rm{nx}}}}$
Or, logy = nx.log $\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} +
\cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)$
Or, $\frac{{\rm{d}}}{{{\rm{dx}}}}$(logy) =
$\frac{{\rm{d}}}{{{\rm{dx}}}}\left\{ {{\rm{nx}}.\log \left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)} \right\}$
Or, $\frac{{{\rm{d}}\left( {{\rm{logy}}}
\right)}}{{{\rm{dy}}}}.\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = nx.$\frac{{\rm{d}}}{{{\rm{dx}}}}$log$\left(
{\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)$ +
log $\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)$.
Or, $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
nx.$\frac{{{\rm{d}}\left( {\log \left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)} \right)}}{{{\rm{d}}\left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}}
\right)}}$.$\frac{{{\rm{d}}\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}.\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$ + log $(\sinh
\frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}){\rm{\: }}$.n.1
Or. $\frac{1}{{\rm{y}}}$.$\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ =
nx. $\frac{1}{{\sin \frac{{\rm{x}}}{{\rm{a}}} + \cos
\frac{{\rm{x}}}{{\rm{a}}}}}$$\left( {\cosh \frac{{\rm{x}}}{{\rm{a}}} + \sinh
\frac{{\rm{x}}}{{\rm{a}}}} \right)$.$\frac{1}{{\rm{a}}}$.$\frac{{{\rm{d}}\left(
{\frac{{\rm{x}}}{{\rm{a}}}} \right)}}{{{\rm{dx}}}}$. + n.log$\left( {\sinh
\frac{{\rm{x}}}{{\rm{a}}} + \cosh \frac{{\rm{x}}}{{\rm{a}}}} \right)$.
Or, $\frac{{{\rm{dy}}}}{{{\rm{dx}}}}$ = y.$\left[ {\frac{{{\rm{nx}}}}{{\rm{a}}}
+ {\rm{n}}.\log \left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)} \right]$
= n.${\left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)^{{\rm{nx}}}}\left[ {\frac{{\rm{x}}}{{\rm{a}}}
+ \log \left( {\sinh \frac{{\rm{x}}}{{\rm{a}}} + \cosh
\frac{{\rm{x}}}{{\rm{a}}}} \right)} \right]$.